Package Exports
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@antononyshch/matrixts) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Matrixts
Matrixts is a small library for matrices written in TypeScript with zero dependencies!
It's just a class with static methods which cover almost all operations over matrices you need to work with.
Table of content
Installation
npm install @antononyshch/matrixtsFeatures
- Check if matrices are equal
- Getting identity/unit matrices with
- Built in; dimension 2x2, 3x3
- Any dimension you may want
- Multiplication
- Built in; multiplication 3x1, 2x2, 3x3
- Multiplications of any dimension
- Addition
- Subtraction
- Power
- Transposition
- Exclude / Minor
- Determinants
- Inverse
Suppose we have some arbitrary matrices:
export const m2x2_1 = [
[4, 7],
[0, -4]
]
export const m2x2_2 = [
[1, -5],
[2, 4]
]
export const m3x3_1 = [
[4, 7, 2],
[0, -4, 1],
[9, -3, 5]
]
export const m3x3_2 = [
[1, -5, 2],
[2, 4, -1],
[4, 3, 9]
]
export const m4x4_1 = [
[1, -5, 2, 5],
[2, 4, -1, 2],
[4, 3, 9, 1],
[1, 2, 3, 4]
]Equality
return Matrix.equal(m3x3_1, m3x3_1); // Result: true
Unit/Identity matrices
- Unit 2x2
Matrix.getUnit2x2(); // Result: <!-- [ [1, 0], [0, 1] ] -->
- Unit 3x3
Matrix.getUnit3x3(); // Result: <!-- [ [1, 0, 0], [0, 1, 0], [0, 0, 1] ] -->
- Arbitrary unit matrix
Matrix.getUnit(4); // Result: <!-- [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] [0, 0, 0, 1] ] -->
Multiplication
- To number
Matrix.mulToN(m3x3_1, 2); // Result: <!-- [ [8, 14, 4], [0, -8, 2], [18, -6, 10] ] -->
- Multiplication
Matrix.mul(m3x3_1, m3x3_2); // Result: <!-- [ [4, 14, 8], [-0, -16, 3], [18, 3, 45] ] -->
- Multiplication 2x2
Matrix.mul2x2(m2x2_1, m2x2_2); // Result: <!-- [ [4, 14], [-0, -16] ] -->
- Multiplication 3x3
Matrix.mul3x3(m3x3_1, m3x3_2); // Result: <!-- [ [4, 14, 8], [-0, -16, 3], [18, 3, 45] ] -->
- Multiplication 3x3 to vector
Matrix.mul3x1(m3x3_1, v); // Result: [[65, 12, 22]]
Addition
Matrix.add(m2x2_1, m2x2_2); // Result: <!-- [ [5, 2], [2, 0] ] -->
Subtraction
Matrix.sub(m2x2_1, m2x2_2); // Result: <!-- [ [3, 12], [-2, -8] ] -->
Power
Matrix.power(m2x2_1, 2); // Result: <!-- [ [16, 49], [0, 16] ] -->
Transposition
Matrix.trans(m3x2_1); // Result: <!-- [ [1, 2], [-5, 4], [2, -1] ] -->
Exclude
Matrix.exclude(m4x4_1, 2, 2); // Result: [ [1, 2, 5] [4, 9, 1] [1, 3, 4] ]
Determinants
- Determinant 2x2
Matrix.determ2x2(m2x2_1); // Result: -16
- Determinant 3x3
Matrix.determ3x3(m3x3_1); // Result: 67
- Determinant 4x4
Matrix.determ4x4(m4x4_1); // Result: 674
Inverse
- Inverse 2x2
Matrix.inverse2x2(m2x2_1); // Result: <!-- [ [0.25, 0.4375], [0, -0.25], ] -->
- Inverse 3x3
Matrix.inverse3x3(m3x3_1); // Result: <!-- [ [-0.2537313401699066, -0.611940324306488, 0.2238806039094925], [0.13432836532592773, 0.02985074557363987, -0.05970149114727974], [0.5373134613037109, 1.1194030046463013, -0.23880596458911896] ] -->