JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 2
  • Score
    100M100P100Q62935F
  • License MIT

A Library for work with matrices

Package Exports

    This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@antononyshch/matrixts) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

    Readme

    Matrixts

    Matrixts is a small library for matrices written in TypeScript with zero dependencies!

    It's just a class with static methods which cover almost all operations over matrices you need to work with.

    Table of content

    Installation

    npm install @antononyshch/matrixts

    Features

    • Check if matrices are equal
    • Getting identity/unit matrices with
      • Built in; dimension 2x2, 3x3
      • Any dimension you may want
    • Multiplication
      • Built in; multiplication 3x1, 2x2, 3x3
      • Multiplications of any dimension
    • Addition
    • Subtraction
    • Power
    • Transposition
    • Exclude / Minor
    • Determinants
    • Inverse

    Suppose we have some arbitrary matrices:

    export const m2x2_1 = [
        [4, 7],
        [0, -4]
    ]
    export const m2x2_2 = [
        [1, -5],
        [2, 4]
    ]
    
    export const m3x3_1 = [
        [4, 7, 2],
        [0, -4, 1],
        [9, -3, 5]
    ]
    export const m3x3_2 = [
        [1, -5, 2],
        [2, 4, -1],
        [4, 3, 9]
    ]
    export const m4x4_1 = [
        [1, -5, 2, 5],
        [2, 4, -1, 2],
        [4, 3, 9, 1],
        [1, 2, 3, 4]
    ]
    1. Equality

      return Matrix.equal(m3x3_1, m3x3_1);
      // Result: true
    2. Unit/Identity matrices

      • Unit 2x2
      Matrix.getUnit2x2();
      // Result:
      <!-- [
          [1, 0],
          [0, 1]
      ] -->
      • Unit 3x3
      Matrix.getUnit3x3();
      // Result:
      <!-- [
          [1, 0, 0],
          [0, 1, 0],
          [0, 0, 1]
      ] -->
      • Arbitrary unit matrix
      Matrix.getUnit(4);
      // Result:
      <!-- [
          [1, 0, 0, 0],
          [0, 1, 0, 0],
          [0, 0, 1, 0]
          [0, 0, 0, 1]
      ] -->
    3. Multiplication

      • To number
      Matrix.mulToN(m3x3_1, 2);
      // Result:
      <!-- [
          [8, 14, 4],
          [0, -8, 2],
          [18, -6, 10]
      ] -->
      • Multiplication
      Matrix.mul(m3x3_1, m3x3_2);
      // Result:
      <!-- [
          [4, 14, 8],
          [-0, -16, 3],
          [18, 3, 45]
      ] -->
      • Multiplication 2x2
      Matrix.mul2x2(m2x2_1, m2x2_2);
      // Result:
      <!-- [
          [4, 14],
          [-0, -16]
      ] -->
      • Multiplication 3x3
      Matrix.mul3x3(m3x3_1, m3x3_2);
      // Result:
      <!-- [
          [4, 14, 8],
          [-0, -16, 3],
          [18, 3, 45]
      ] -->
      • Multiplication 3x3 to vector
      Matrix.mul3x1(m3x3_1, v);
      // Result:
      [[65, 12, 22]]
    4. Addition

      Matrix.add(m2x2_1, m2x2_2);
      // Result:
      <!-- [
          [5, 2],
          [2, 0]
      ] -->
    5. Subtraction

      Matrix.sub(m2x2_1, m2x2_2);
      // Result:
      <!-- [
          [3, 12],
          [-2, -8]
      ] -->
    6. Power

      Matrix.power(m2x2_1, 2);
      // Result:
      <!-- [
          [16, 49],
          [0, 16]
      ] -->
    7. Transposition

      Matrix.trans(m3x2_1);
      // Result:
      <!-- [
          [1, 2],
          [-5, 4],
          [2, -1]
      ] -->
    8. Exclude

      Matrix.exclude(m4x4_1, 2, 2);
      // Result: 
      [
          [1, 2, 5]
          [4, 9, 1]
          [1, 3, 4]
      ]
    9. Determinants

      • Determinant 2x2
      Matrix.determ2x2(m2x2_1);
      // Result: -16
      • Determinant 3x3
      Matrix.determ3x3(m3x3_1);
      // Result: 67
      • Determinant 4x4
      Matrix.determ4x4(m4x4_1);
      // Result: 674
    10. Inverse

      • Inverse 2x2
      Matrix.inverse2x2(m2x2_1);
      // Result:
      <!-- [
         [0.25, 0.4375],
         [0,	-0.25],
      ] -->
      • Inverse 3x3
      Matrix.inverse3x3(m3x3_1);
      // Result:
      <!-- [
          [-0.2537313401699066, -0.611940324306488, 0.2238806039094925],
          [0.13432836532592773, 0.02985074557363987, -0.05970149114727974],
          [0.5373134613037109, 1.1194030046463013, -0.23880596458911896]
      ] -->