JSPM

@egskin/auto-publishing-mcp-server

1.0.0
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 2
  • Score
    100M100P100Q21766F
  • License MIT

Enterprise-grade MCP Server for Auto-Publishing with pre-publish validation, multi-cloud deployment, and monitoring

Package Exports

  • @egskin/auto-publishing-mcp-server
  • @egskin/auto-publishing-mcp-server/src/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@egskin/auto-publishing-mcp-server) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Auto-Publishing MCP Server

npm version Docker Pulls License: MIT

Enterprise-grade MCP (Model Context Protocol) server for automated deployment and publishing with comprehensive validation, security scanning, and multi-cloud support.

🚀 Features

  • 🔍 Pre-Publish Validation: Comprehensive code validation with auto-fix capabilities
  • 🛡️ Security Scanning: Vulnerability detection for dependencies and Docker images
  • ☁️ Multi-Cloud Deployment: Support for AWS, GCP, and Azure
  • 🎯 A/B Testing & Canary Deployments: Safe rollout strategies
  • 📊 Advanced Monitoring: Prometheus, Grafana, Datadog, and Loki integration
  • 🔄 Database Migration: Automated database schema management
  • 🏗️ CI/CD Integration: GitHub Actions and GitLab CI support
  • 🐳 Docker & Kubernetes: Container orchestration support
  • 📝 VS Code Extension: Full IDE integration

📦 Installation

NPM Installation

# Global installation
npm install -g @auto-publishing/mcp-server

# As a dependency
npm install @auto-publishing/mcp-server

Docker Installation

# Pull the image
docker pull autopublishing/mcp-server:latest

# Run the container
docker run -d \
  -p 3000:3000 \
  -v /var/run/docker.sock:/var/run/docker.sock \
  --name mcp-server \
  autopublishing/mcp-server:latest

🚀 Quick Start

Using NPM

# Start the server
auto-publishing-mcp start

# With custom port
auto-publishing-mcp start --port 8080

# Check health
auto-publishing-mcp health

# List available tools
auto-publishing-mcp tools

Using Docker

docker run -d \
  -p 3000:3000 \
  -e DD_API_KEY=your-datadog-key \
  -e AWS_ACCESS_KEY_ID=your-aws-key \
  -e AWS_SECRET_ACCESS_KEY=your-aws-secret \
  -v /var/run/docker.sock:/var/run/docker.sock \
  autopublishing/mcp-server:latest

Using Docker Compose

version: '3.8'
services:
  mcp-server:
    image: autopublishing/mcp-server:latest
    ports:
      - "3000:3000"
    environment:
      - NODE_ENV=production
      - DD_API_KEY=${DD_API_KEY}
      - AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
      - AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
    volumes:
      - /var/run/docker.sock:/var/run/docker.sock
      - ./config:/app/config
    restart: unless-stopped

🛠️ Available Tools

Git Operations

  • git/status - Get repository status
  • git/commit - Create commits
  • git/push - Push to remote
  • git/pull - Pull from remote

Docker Management

  • docker/build - Build images
  • docker/run - Run containers
  • docker/push - Push to registry
  • docker/logs - View container logs

Deployment

  • deploy/to-environment - Deploy to specific environment
  • deploy/canary - Canary deployment
  • deploy/validate - Validate deployment config
  • deploy/get-status - Check deployment status

Validation & Security

  • validation/run-pre-publish - Pre-publish validation
  • security/scan-docker-image - Scan Docker images
  • security/scan-source-code - Scan source code

Monitoring

  • monitor/prometheus - Prometheus queries
  • monitor/health-check - Health checks
  • datadog/submit-metrics - Submit Datadog metrics
  • datadog/create-dashboard - Create Datadog dashboards

Pipeline Management

  • pipeline/create - Create deployment pipeline
  • pipeline/run - Execute pipeline
  • pipeline/status - Check pipeline status

⚙️ Configuration

Environment Variables

# Server Configuration
MCP_PORT=3000
MCP_HOST=0.0.0.0
NODE_ENV=production

# Datadog Integration
DD_API_KEY=your-datadog-api-key
DD_APP_KEY=your-datadog-app-key

# AWS Configuration
AWS_ACCESS_KEY_ID=your-aws-key
AWS_SECRET_ACCESS_KEY=your-aws-secret
AWS_DEFAULT_REGION=us-east-1

# GCP Configuration
GCP_PROJECT_ID=your-project-id
GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json

# Azure Configuration
AZURE_SUBSCRIPTION_ID=your-subscription-id
AZURE_CLIENT_ID=your-client-id
AZURE_CLIENT_SECRET=your-client-secret
AZURE_TENANT_ID=your-tenant-id

Configuration File

Create a config.json file:

{
  "server": {
    "port": 3000,
    "host": "0.0.0.0"
  },
  "validation": {
    "autoFix": true,
    "skipNonCritical": false
  },
  "deployment": {
    "defaultEnvironment": "staging",
    "requireApproval": true
  }
}

🔐 Security

  • All API keys should be provided via environment variables
  • Docker socket access is required for container management
  • Use least privilege principle for cloud credentials
  • Enable TLS for production deployments

📊 Monitoring

The server exposes metrics at:

  • /metrics - Prometheus format metrics
  • /health - Health check endpoint
  • /status - Detailed status information

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

🙏 Acknowledgments


Made with ❤️ by the Auto-Publishing Team