Package Exports
- @hillywolf/imagegen-mcp
- @hillywolf/imagegen-mcp/dist/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@hillywolf/imagegen-mcp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
MCP OpenAI Image Generation Server
🚀 零安装配置! 直接在MCP客户端中使用,无需任何预安装步骤
{ "mcpServers": { "imagegen-mcp": { "command": "npx", "args": ["@lupinlin1/imagegen-mcp", "--models", "dall-e-3"], "env": { "OPENAI_API_KEY": "your_api_key" } } } }
This project provides a server implementation based on the Model Context Protocol (MCP) that acts as a wrapper around OpenAI's Image Generation and Editing APIs (see OpenAI documentation).
Features
- Exposes OpenAI image generation capabilities through MCP tools.
- Supports
text-to-imagegeneration using models like DALL-E 2, DALL-E 3, and gpt-image-1 (if available/enabled). - Supports
image-to-imageediting using DALL-E 2 and gpt-image-1 (if available/enabled). - Configurable via environment variables and command-line arguments.
- Handles various parameters like size, quality, style, format, etc.
- Saves generated/edited images to temporary files and returns the path along with the base64 data.
Here's an example of generating an image directly in Cursor using the text-to-image tool integrated via MCP:
🚀 安装方式
🎯 零安装配置 (推荐)
方式1: NPX自动下载 (需要NPM发布)
npm install -g @lupinlin1/imagegen-mcp方式2: GitHub远程执行 (立即可用)
# 一行命令安装脚本
curl -fsSL https://raw.githubusercontent.com/LupinLin1/imagegen-mcp/main/scripts/install.sh | bash方式3: 本地脚本 (开发者友好)
git clone https://github.com/LupinLin1/imagegen-mcp.git
cd imagegen-mcp
npm install && npm run build📊 方案对比
| 方式 | 安装步骤 | 网络依赖 | 启动速度 | 适用场景 |
|---|---|---|---|---|
| NPX自动下载 | 0步 | 首次需要 | 快 | 生产环境 |
| GitHub远程 | 0步 | 每次需要 | 中等 | 快速试用 |
| 本地脚本 | 1步克隆 | 无 | 最快 | 开发测试 |
📁 更多配置: 查看 examples/mcp-configs/ 获取所有配置示例
Prerequisites
- Node.js (v18 or later recommended)
- npm or yarn
- An OpenAI API key
🎯 零安装配置 (推荐)
无需任何预安装步骤!直接配置即可使用:
Cursor 编辑器
{
"mcpServers": {
"imagegen-mcp": {
"command": "npx",
"args": ["@lupinlin1/imagegen-mcp", "--models", "dall-e-3"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key_here"
}
}
}
}Claude Desktop
{
"mcpServers": {
"imagegen-mcp": {
"command": "npx",
"args": ["@lupinlin1/imagegen-mcp"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key_here"
}
}
}
}💡 零安装原理
- ✅ 首次运行:
npx自动下载并缓存包 - ✅ 后续启动: 使用缓存,启动快速
- ✅ 自动更新: 始终使用最新版本
- ✅ 无污染: 不会全局安装任何包
📁 更多配置示例: 查看 examples/mcp-configs/ 目录
Setup
Clone the repository:
git clone <your-repository-url> cd <repository-directory>
Install dependencies:
npm install # or yarn install
Configure Environment Variables: Create a
.envfile in the project root by copying the example:cp .env.example .envEdit the
.envfile and add your OpenAI API key:OPENAI_API_KEY=your_openai_api_key_here
Building
To build the TypeScript code into JavaScript:
npm run build
# or
yarn buildThis will compile the code into the dist directory.
Running the Server
This section provides details on running the server locally after cloning and setup. For a quick start without cloning, see the Quick Run with npx section.
Using ts-node (for development):
npx ts-node src/index.ts [options]Using the compiled code:
node dist/index.js [options]Options:
--models <model1> <model2> ...: Specify which OpenAI models the server should allow. If not provided, it defaults to allowing all models defined insrc/libs/openaiImageClient.ts(currently gpt-image-1, dall-e-2, dall-e-3).- Example using
npx(also works for local runs):... --models gpt-image-1 dall-e-3 - Example after cloning:
node dist/index.js --models dall-e-3 dall-e-2
- Example using
The server will start and listen for MCP requests via standard input/output (using StdioServerTransport).
MCP Tools
The server exposes the following MCP tools:
text-to-image
Generates an image based on a text prompt.
Parameters:
text(string, required): The prompt to generate an image from.model(enum, optional): The model to use (e.g.,gpt-image-1,dall-e-2,dall-e-3). Defaults to the first allowed model.size(enum, optional): Size of the generated image (e.g.,1024x1024,1792x1024). Defaults to1024x1024. Check OpenAI documentation for model-specific size support.style(enum, optional): Style of the image (vividornatural). Only applicable todall-e-3. Defaults tovivid.output_format(enum, optional): Format (png,jpeg,webp). Defaults topng.output_compression(number, optional): Compression level (0-100). Defaults to 100.moderation(enum, optional): Moderation level (low,auto). Defaults tolow.background(enum, optional): Background (transparent,opaque,auto). Defaults toauto.transparentrequiresoutput_formatto bepngorwebp.quality(enum, optional): Quality (standard,hd,auto, ...). Defaults toauto.hdonly applicable todall-e-3.n(number, optional): Number of images to generate. Defaults to 1. Note:dall-e-3only supportsn=1.
Returns:
content: An array containing:- A
textobject containing the path to the saved temporary image file (e.g.,/tmp/uuid.png).
- A
image-to-image
Edits an existing image based on a text prompt and optional mask.
Parameters:
images(string, required): An array of file paths to local images.prompt(string, required): A text description of the desired edits.mask(string, optional): A file path of mask image (PNG). Transparent areas indicate where the image should be edited.model(enum, optional): The model to use. Onlygpt-image-1anddall-e-2are supported for editing. Defaults to the first allowed model.size(enum, optional): Size of the generated image (e.g.,1024x1024). Defaults to1024x1024.dall-e-2only supports256x256,512x512,1024x1024.output_format(enum, optional): Format (png,jpeg,webp). Defaults topng.output_compression(number, optional): Compression level (0-100). Defaults to 100.quality(enum, optional): Quality (standard,hd,auto, ...). Defaults toauto.n(number, optional): Number of images to generate. Defaults to 1.
Returns:
content: An array containing:- A
textobject containing the path to the saved temporary image file (e.g.,/tmp/uuid.png).
- A
Development
- Linting:
npm run lintoryarn lint - Formatting:
npm run formatoryarn format(if configured inpackage.json)
Contributing
Pull Requests (PRs) are welcome! Please feel free to submit improvements or bug fixes.