JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 28
  • Score
    100M100P100Q56978F
  • License MIT

MCP server for image generation with multiple provider support

Package Exports

  • @merlinrabens/image-gen-mcp
  • @merlinrabens/image-gen-mcp/dist/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@merlinrabens/image-gen-mcp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Image Gen MCP Server

A production-ready Model Context Protocol (MCP) server for multi-provider image generation with intelligent provider selection, enterprise-grade security, and comprehensive testing.

Features

🎨 9 Leading AI Image Providers

  • OpenAI DALL-E 3 - Versatile, high-quality generation
  • Stability AI - Stable Diffusion XL with fine control
  • Leonardo.AI - Character consistency for carousels
  • Ideogram - Exceptional text rendering for logos/posters
  • Black Forest Labs (Flux) - Ultra-high resolution photorealism
  • Fal.ai - Ultra-fast generation (50-300ms)
  • Clipdrop - Advanced post-processing and background removal
  • Google Gemini - Multimodal understanding
  • Replicate - Access to diverse open models

🧠 Intelligent Provider Selection

  • Use-case detection: Automatically selects best provider based on prompt analysis
  • Automatic fallback: Smart fallback chain when providers fail
  • Performance optimization: O(n) complexity keyword matching
  • Context-aware: Detects logos, text-heavy, photorealistic, carousel needs

🔒 Enterprise Security

  • Input validation: Buffer size limits (10MB max)
  • API key validation: Detects placeholders and invalid keys
  • Prompt sanitization: Length limits and content validation
  • Rate limiting: Prevents API throttling (10 req/min)
  • Resource cleanup: Proper AbortController management

Performance & Reliability

  • Response caching: 5-minute TTL cache
  • Exponential backoff: Smart retry logic
  • Connection pooling: Efficient resource usage
  • Timeout management: Configurable per-provider timeouts
  • Error recovery: Distinguishes retryable vs permanent errors

Quality Assurance

  • 100% test coverage: 49 comprehensive tests
  • Type safety: Full TypeScript with strict typing
  • No any types: Proper type definitions throughout
  • Zod validation: Runtime schema validation
  • Mock testing: No real API calls needed for tests

Quick Start

Installation

The easiest way to use this MCP server is via NPM:

npx @merlinrabens/image-gen-mcp

Or install globally:

npm install -g @merlinrabens/image-gen-mcp

Configuration

Add the MCP server to your MCP client configuration. The exact location depends on which client you're using.

MCP Client Configuration Files

Claude Desktop:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json

Claude Code:

  • macOS/Linux: ~/.claude.json
  • Windows: %USERPROFILE%\.claude.json

Cursor and other MCP clients: Check your client's documentation for the config file location.

{
  "mcpServers": {
    "image-gen-mcp": {
      "command": "npx",
      "args": ["-y", "@merlinrabens/image-gen-mcp"],
      "env": {
        "OPENAI_API_KEY": "sk-...",
        "STABILITY_API_KEY": "sk-...",
        "REPLICATE_API_TOKEN": "r8_...",
        "GEMINI_API_KEY": "AIza...",
        "LEONARDO_API_KEY": "...",
        "IDEOGRAM_API_KEY": "...",
        "BFL_API_KEY": "...",
        "FAL_API_KEY": "...",
        "CLIPDROP_API_KEY": "...",
        "DEFAULT_PROVIDER": "auto",
        "LOG_LEVEL": "info"
      }
    }
  }
}

Environment Variables:

  • At least one provider API key is required for production use
  • DEFAULT_PROVIDER: Set to "auto" for intelligent selection or specify a provider name
  • LOG_LEVEL: "debug" | "info" | "warn" | "error"
  • DISABLE_FALLBACK: Set to "true" to prevent fallback to other providers
  • ALLOW_MOCK_PROVIDER: Set to "true" to allow MOCK provider in production (not recommended)
  • IMAGE_OUTPUT_DIR: Where to save generated images (see Image Storage section)

Note: If no real providers are configured, the server will fail with a clear error message instead of silently using MOCK. The MOCK provider is automatically available in development/test environments (NODE_ENV=development or NODE_ENV=test).

API Keys

Get your API keys from:

Testing

After configuration, restart your MCP client and test:

  1. Check server status: "Check image-gen-mcp status with health.ping"
  2. List configured providers: "List available image-gen-mcp providers"
  3. Generate your first image: "Generate a serene mountain landscape"

Development Setup

For contributors or local development:

1. Clone Repository

git clone https://github.com/merlinrabens/image-gen-mcp.git
cd image-gen-mcp

2. Install Dependencies

npm install

3. Configure Environment

Copy .env.example to .env and add your API keys:

cp .env.example .env

4. Build & Run

npm run build
npm start

5. Local Development Config

For development with hot reload:

{
  "mcpServers": {
    "image-gen-mcp": {
      "command": "npx",
      "args": ["tsx", "/absolute/path/to/image-gen-mcp/src/index.ts"],
      "env": {
        "OPENAI_API_KEY": "sk-...",
        "DEFAULT_PROVIDER": "auto"
      }
    }
  }
}

Security Note: API keys in the config file are stored in plain text. Ensure proper file permissions.

Image Storage

By default, generated images are saved to .image-gen-mcp/ in your current working directory. This keeps images organized with your project and persists them across system restarts.

Storage Options

Configure where images are saved using the IMAGE_OUTPUT_DIR environment variable:

Value Description Example
Not set Default: .image-gen-mcp/ in current working directory ./image-gen-mcp/
"cwd" Explicitly use .image-gen-mcp/ in current directory ./image-gen-mcp/
"temp" Use system temp directory (old behavior) /tmp/ or %TEMP%
/absolute/path Save to specific directory /Users/me/images/

Configuration Example

{
  "mcpServers": {
    "image-gen-mcp": {
      "command": "npx",
      "args": ["-y", "@merlinrabens/image-gen-mcp@latest"],
      "env": {
        "OPENAI_API_KEY": "sk-...",
        // Optional: Change image storage location
        "IMAGE_OUTPUT_DIR": "temp"  // or "/custom/path" or leave unset for default
      }
    }
  }
}

.gitignore

If using the default .image-gen-mcp/ directory, add it to your .gitignore:

# MCP generated images
.image-gen-mcp/

Automatic Cleanup

Old images (>1 hour) are automatically cleaned up to prevent disk space issues. The cleanup runs every 30 minutes.

Available Tools

health.ping

Check server status - no configuration required.

Request: health.ping()
Response: "ok"

config.providers

List all providers and their configuration status.

Response: [
  {
    "name": "OPENAI",
    "configured": true,
    "requiredEnvVars": ["OPENAI_API_KEY"],
    "capabilities": {
      "supportsGenerate": true,
      "supportsEdit": true,
      "supportedModels": ["dall-e-3", "gpt-image-1"]
    }
  },
  ...
]

image.generate

Generate images from text prompts.

Request: {
  "prompt": "A serene mountain landscape at sunset",
  "provider": "auto",     // Or specify: OPENAI, LEONARDO, FAL, etc.
  "width": 1024,          // Optional
  "height": 1024,         // Optional
  "model": "dall-e-3",    // Optional
  "seed": 12345          // Optional
}

Response: {
  "images": [{
    "dataUrl": "data:image/png;base64,...",
    "format": "png"
  }],
  "provider": "OPENAI",
  "model": "dall-e-3"
}

image.edit

Edit existing images with text prompts. Supports multiple providers including OpenAI, Stability, Ideogram, BFL, Gemini, and Clipdrop.

The baseImage and maskImage fields support:

  • Data URLs: data:image/png;base64,...
  • File paths: /path/to/image.png
  • File URLs: file:///path/to/image.png
Request: {
  "prompt": "Add a rainbow to the sky",
  "baseImage": "/path/to/image.png",         // Can be file path or data URL
  "maskImage": "/path/to/mask.png",          // Optional (file path or data URL)
  "provider": "OPENAI"                       // Optional (auto-selects if not specified)
}

Provider Examples

Image Editing with File Paths

Edit generated images directly using file paths:

// After generating an image saved to disk
{
  "prompt": "Add a sunset background",
  "baseImage": "/path/to/generated-image.png",  // Direct file path
  "provider": "OPENAI"
}

// Or using a data URL (still supported)
{
  "prompt": "Make it more colorful",
  "baseImage": "...",
  "provider": "STABILITY"
}

// With a mask for selective editing
{
  "prompt": "Replace the background with mountains",
  "baseImage": "/path/to/image.png",
  "maskImage": "/path/to/mask.png",  // Both support file paths
  "provider": "BFL"
}

Automatic Provider Selection

Let the system choose the best provider for your use case:

{
  "prompt": "Create a logo with the text 'TechStartup 2025'",
  "provider": "auto"  // Will select Ideogram for text rendering
}

Mock Provider (No API Key Required)

Perfect for testing:

{
  "prompt": "test image",
  "provider": "MOCK"
}

OpenAI DALL-E

Best for high-quality, creative images:

  • Generation: Uses dall-e-3 (modern, high-quality)
  • Editing: Uses gpt-image-1 (modern, supports up to 50MB images)
{
  "prompt": "An oil painting of a robot reading a book",
  "provider": "OPENAI",
  "model": "dall-e-3",
  "width": 1792,
  "height": 1024
}

Note: DALL-E 2 has been deprecated. All operations use modern models only (dall-e-3 for generation, gpt-image-1 for editing).

Stability AI

Great for photorealistic and artistic styles:

{
  "prompt": "A photorealistic portrait of a cyberpunk character",
  "provider": "STABILITY",
  "model": "stable-image-core-v1",
  "seed": 42
}

Replicate

Access to cutting-edge models like Flux:

{
  "prompt": "A futuristic cityscape with flying cars",
  "provider": "REPLICATE",
  "model": "black-forest-labs/flux-schnell",
  "guidance": 7.5,
  "steps": 4
}

Google Gemini 2.5 Flash Image

Advanced image generation and editing with natural language:

{
  "prompt": "A serene landscape with mountains reflected in a crystal-clear lake at sunset",
  "provider": "GEMINI",
  "model": "gemini-2.5-flash-image-preview"
}

For editing:

{
  "prompt": "Remove the person in the background and add a rainbow",
  "baseImage": "data:image/png;base64,...",
  "provider": "GEMINI"
}

Ideogram

Best-in-class text rendering for logos and posters:

{
  "prompt": "A vintage poster with the text 'SUMMER FESTIVAL 2025' in bold retro typography",
  "provider": "IDEOGRAM",
  "model": "V_2_TURBO"
}

Leonardo.AI

Character consistency for carousels and series:

{
  "prompt": "A friendly robot mascot waving hello, consistent character design",
  "provider": "LEONARDO",
  "model": "leonardo-diffusion-xl"
}

Fal.ai

Ultra-fast generation for rapid iteration:

{
  "prompt": "Quick sketch of a product mockup",
  "provider": "FAL",
  "model": "fast-sdxl"  // 50-100ms generation!
}

BFL/Flux

Industry-leading photorealistic quality:

{
  "prompt": "Professional headshot of a business executive in modern office",
  "provider": "BFL",
  "model": "flux-pro"
}

Clipdrop

Advanced editing and post-processing:

{
  "prompt": "Remove background",
  "baseImage": "data:image/png;base64,...",
  "provider": "CLIPDROP"
}

Provider Capabilities

Provider Generate Edit Max Size Models Special Features
Mock 256×256 mock-v1 Testing only
OpenAI 1792×1792 dall-e-3, gpt-image-1 High quality, creative
Stability 1536×1536 SD3.5, SD-XL, Image Core Photorealistic, artistic
Leonardo 1536×1536 Leonardo models Character consistency
Ideogram 2048×2048 V_2, V_2_TURBO Exceptional text rendering
BFL/Flux 2048×2048 Flux Pro, Dev, Schnell Ultra-high resolution
Fal 1920×1440 Fast SDXL variants Ultra-fast (50-300ms)
Clipdrop 2048×2048 Various Background/object removal
Replicate 2048×2048 Flux, SDXL variants Open model access
Gemini 3072×3072 Gemini 2.5 Flash Image Multimodal understanding

Note: All Gemini images include a SynthID watermark. Requires Blaze pricing plan.

Fallback Chain

When a provider fails or isn't configured, the system automatically falls back:

IDEOGRAM → BFL → LEONARDO → FAL → OPENAI → STABILITY → REPLICATE → GEMINI → MOCK

Or use provider: "auto" for intelligent selection based on your prompt content.

You can override this with the DEFAULT_PROVIDER environment variable.

To disable fallback completely and only use the specified provider, set DISABLE_FALLBACK=true. This ensures the system will fail if the requested provider is unavailable rather than falling back to another provider.

Development

Build

npm run build

Type Check

npm run typecheck

Run Tests

npm test

Project Structure

image-gen-mcp/
├── src/
│   ├── index.ts           # MCP server entry
│   ├── config.ts          # Provider management
│   ├── types.ts           # TypeScript types & Zod schemas
│   ├── services/
│   │   └── providerSelector.ts  # Intelligent provider selection
│   ├── util/
│   │   └── logger.ts      # Logging utility
│   └── providers/
│       ├── base.ts        # Abstract provider class
│       ├── mock.ts        # Mock provider
│       ├── openai.ts      # OpenAI DALL-E
│       ├── stability.ts   # Stability AI
│       ├── replicate.ts   # Replicate
│       ├── gemini.ts      # Google Gemini
│       ├── ideogram.ts    # Ideogram (text rendering)
│       ├── leonardo.ts    # Leonardo.AI (consistency)
│       ├── fal.ts         # Fal.ai (ultra-fast)
│       ├── bfl.ts         # Black Forest Labs Flux
│       └── clipdrop.ts    # Clipdrop (post-processing)

Architecture Notes

  • Stdio Transport: Uses MCP stdio protocol for maximum client compatibility
  • Intelligent Selection: Analyzes prompts to automatically choose optimal provider
  • Data URLs: Images returned as base64 data URLs for direct preview (warning for >5MB)
  • Circuit Breaker: Intelligent error categorization for fallback decisions
  • Provider Pattern: Pluggable adapters with abstract base class
  • Minimal Dependencies: Only essential packages for lean deployment

Use Case Examples

Social Media Carousels

// Generate consistent character across multiple slides
const mascot1 = await generate({
  prompt: "Friendly robot mascot introducing a product",
  provider: "LEONARDO"
});
const mascot2 = await generate({
  prompt: "Same friendly robot mascot explaining features",
  provider: "LEONARDO"
});

Marketing Materials

// Logo with text
await generate({
  prompt: "Modern tech startup logo with text 'InnovateCo'",
  provider: "IDEOGRAM"
});

// Product shots
await generate({
  prompt: "Professional product photography of smartphone",
  provider: "BFL"
});

Rapid Prototyping

// Ultra-fast iteration
await generate({
  prompt: "Quick wireframe sketch of mobile app",
  provider: "FAL"  // Returns in 50-300ms!
});

Post-Processing Pipeline

// Generate then edit
const image = await generate({
  prompt: "Product on white background",
  provider: "auto"
});

const transparent = await edit({
  prompt: "Remove background",
  baseImage: image.dataUrl,
  provider: "CLIPDROP"
});

Troubleshooting

"Provider not configured"

Add the required API key to your .env file.

Large image warnings

Images over 5MB trigger warnings. For production, consider external storage (S3/CDN).

Timeout errors

Default timeout is 30s (60s for Gemini). Slow providers may need adjustment.

Mock provider returns small images

Mock is limited to 256×256 for testing. Use real providers for full resolution.

License

MIT

Next Steps

  1. Get API keys from your preferred providers (see API Keys section)
  2. Add the MCP server to your MCP client config (see Configuration section)
  3. Add your API keys to the env field in the config
  4. Restart your MCP client (Claude Desktop, Claude Code, Cursor, etc.)
  5. Test the server: "Check image-gen-mcp status with health.ping"
  6. Generate your first image: "Generate a serene mountain landscape"

For local development or contributions, see the Development Setup section.