JSPM

@mhyfritz/bin-data

0.0.6
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 11
  • Score
    100M100P100Q50228F
  • License MIT

Bin data into given number of chunks and pick a representative value for each bin.

Package Exports

  • @mhyfritz/bin-data

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@mhyfritz/bin-data) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Data binning

Partition data into given number of chunks and pick a representative value for each chunk.

Installation

npm install @mhyfritz/bin-data

Usage

Try bin-data in your browser.

Node / module bundlers:

const binData = require("@mhyfritz/bin-data");

// or

import * as binData from "@mhyfritz/bin-data";

Browser:

<!-- import from unpkg -->
<script src="https://unpkg.com/@mhyfritz/bin-data"></script>

<!-- import from jsdelivr -->
<script src="https://cdn.jsdelivr.net/npm/@mhyfritz/bin-data"></script>

<!-- usage; module is globally registered as `mhyfritzBinData` -->
<script>
  const { bin } = mhyfritzBinData;
  bin([1, 2, 3, 4, 5], 2);
</script>

API:

const { bin, chunk, pick } = require("@mhyfritz/bin-data");

// data = [-10, -9, ..., -1, 0, 1, ..., 9, 10]
const data = Array.from({ length: 21 }, (_, i) => i - 10);

// we can get the raw chunks if we want
chunk(data, 4);
// ==>
// [
//   { start: 0, end: 4, data: [ -10, -9, -8, -7, -6 ] },
//   { start: 5, end: 10, data: [ -5, -4, -3, -2, -1, 0 ] },
//   { start: 11, end: 15, data: [ 1, 2, 3, 4, 5 ] },
//   { start: 16, end: 20, data: [ 6, 7, 8, 9, 10 ] }
// ]

// bin the data; by default, the max. value is picked
bin(data, 4);
// ==> [ -6, 0, 5, 10 ]

bin(data, 4, pick.min);
// ==> [ -10, -5, 1, 6 ]

bin(data, 4, pick.mean);
// ==> [ -8, -2.5, 3, 8 ]

bin(data, 4, chunk => pick.quantile(chunk, 0.75));
// ==> [ -7, -1.25, 4, 9 ]

// for complex, non-numeric data, specify an accessor function
// objects = [{x: -10}, ..., {x: 0}, ..., {x: 10}]
const objects = data.map(value => ({ x: value }));
bin(objects, 4, chunk => pick.max(chunk, d => d.x));
// [ -6, 0, 5, 10 ]

// for getting back the actual objects, one can use `pick.greatest()`
bin(objects, 4, chunk => pick.greatest(chunk, d => d.x));
// [ { x: -6 }, { x: 0 }, { x: 5 }, { x: 10 } ]

// one can of course also provide a custom function
// example: pick  maximum of the absolute values
function absMax(chunk) {
  let ret = chunk[0];
  for (const x of chunk) {
    if (Math.abs(x) > Math.abs(ret)) {
      ret = x;
    }
  }
  return ret;
}

bin(data, 4, absMax);
// ==> [ -10, -5, 5, 10 ]

bin(data, numChunks, pickRepresentative)

  • data: an array or other iterable
  • numChunks: the number of chunks to generate
  • pickRepresentative [chunk => value]: function to pick representative value of chunk; default: pick.max (see below)

Example

bin([1, 2, 3, 4, 5], 2);
// ==> [ 3, 5 ]

pick

Object holding pre-defined functions to pick chunk representative, e.g. pick.min to pick minimum value of chunk. See d3-array for all options.

Example

pick.mean([1, 2, 3]);
// ==> 2
pick.mean([4, 5]);
// ==> 4.5
bin([1, 2, 3, 4, 5], 2, pick.mean);
// ==> [ 2, 4.5 ]

chunk(data, numChunks)

Partition data into numChunks chunks. Returns an array holding values of chunks plus start and end indices in data.

Example

chunk([1, 2, 3, 4, 5], 2);
// ==>
// [
//   { start: 0, end: 2, data: [ 1, 2, 3 ] },
//   { start: 3, end: 4, data: [ 4, 5 ] }
// ]