Package Exports
- @modelx/data
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@modelx/data) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
@modelx/data
quickly generate UMDs and other module types with rollup and typescript
Getting started
Clone the repo and drop your module in the src directory.
# Install Prerequisites
$ npm install rollup typedoc jest sitedown --g
Basic Usage
$ npm run build #builds type declarations, created bundled artifacts with rollup and generates documenation
Description
ModelScript is a javascript module with simple and efficient tools for data mining and data analysis in JavaScript. ModelScript can be used with ML.js, pandas-js, and numjs, to approximate the equivalent R/Python tool chain in JavaScript.
In Python, data preparation is typically done in a DataFrame, ModelScript encourages a more R like workflow where the data preparation is in it's native structure.
Installation
$ npm i modelscript
Full Documentation
Usage (basic)
ModelScript is an EcmaScript module and designed to be imported in an ES2015+ environment. In order to use in older environment, please use const modelscript = require('modelscript/build/modelscript.cjs.js')
for older versions of node and <script type="text/javascript" src=".../path/to/.../modelscript/build/modelscript.umd.js"/>
"modelscript" : {
ml:{ //see https://github.com/mljs/ml
UpperConfidenceBound [Class: UpperConfidenceBound]{ // Implementation of the Upper Confidence Bound algorithm
predict(), //returns next action based off of the upper confidence bound
learn(), //single step training method
train(), //training method for upper confidence bound calculations
},
ThompsonSampling [Class: ThompsonSampling]{ //Implementation of the Thompson Sampling algorithm
predict(), //returns next action based off of the thompson sampling
learn(), //single step training method
train(), //training method for thompson sampling calculations
},
},
nlp:{ //see https://github.com/NaturalNode/natural
ColumnVectorizer [Class: ColumnVectorizer]{ //class creating sparse matrices from a corpus
get_tokens(), // Returns a distinct array of all tokens after fit_transform
get_vector_array(), //Returns array of arrays of strings for dependent features from sparse matrix word map
fit_transform(options), //Fits and transforms data by creating column vectors (a sparse matrix where each row has every word in the corpus as a column and the count of appearances in the corpus)
get_limited_features(options), //Returns limited sets of dependent features or all dependent features sorted by word count
evaluateString(testString), //returns word map with counts
evaluate(testString), //returns new matrix of words with counts in columns
}
},
csv:{
loadCSV: [Function: loadCSV], //asynchronously loads CSVs, either a filepath or a remote URI
loadTSV: [Function: loadTSV], //asynchronously loads TSVs, either a filepath or a remote URI
},
model_selection: {
train_test_split: [Function: train_test_split], // splits data into training and testing sets
cross_validation_split: [Function: kfolds], //splits data into k-folds
cross_validate_score: [Function: cross_validate_score],//test model variance and bias
grid_search: [Function: grid_search], // tune models with grid search for optimal performance
},
DataSet [Class: DataSet]: { //class for manipulating an array of objects (typically from CSV data)
columnMatrix(vectors), //returns a matrix of values by combining column arrays into a matrix
columnArray(columnName, options), // - returns a new array of a selected column from an array of objects, can filter, scale and replace values
columnReplace(columnName, options), // - returns a new array of a selected column from an array of objects and replaces empty values, encodes values and scales values
columnScale(columnName, options), // - returns a new array of scaled values which can be reverse (descaled). The scaling transformations are stored on the DataSet
columnDescale(columnName, options), // - Returns a new array of descaled values
selectColumns(columns, options), //returns a list of objects with only selected columns as properties
labelEncoder(columnName, options), // - returns a new array and label encodes a selected column
labelDecode(columnName, options), // - returns a new array and decodes an encoded column back to the original array values
oneHotEncoder(columnName, options), // - returns a new object of one hot encoded values
columnMatrix(columnName, options), // - returns a matrix of values from multiple columns
columnReducer(newColumnName, options), // - returns a new array of a selected column that is passed a reducer function, this is used to create new columns for aggregate statistics
columnMerge(name, data), // - returns a new column that is merged onto the data set
filterColumn(options), // - filtered rows of data,
fitColumns(options), // - mutates data property of DataSet by replacing multiple columns in a single command
static reverseColumnMatrix(options), // returns an array of objects by applying labels to matrix of columns
static reverseColumnVector(options), // returns an array of objects by applying labels to column vector
},
calc:{
getTransactions: [Function getTransactions], // Formats an array of transactions into a sparse matrix like format for Apriori/Eclat
assocationRuleLearning: [async Function assocationRuleLearning], // returns association rule learning results using apriori
},
util: {
range: [Function], // range helper function
rangeRight: [Function], //range right helper function
scale: [Function: scale], //scale / normalize data
avg: [Function: arithmeticMean], // aritmatic mean
mean: [Function: arithmeticMean], // aritmatic mean
sum: [Function: sum],
max: [Function: max],
min: [Function: min],
sd: [Function: standardDeviation], // standard deviation
StandardScalerTransforms: [Function: StandardScalerTransforms], // returns two functions that can standard scale new inputs and reverse scale new outputs
MinMaxScalerTransforms: [Function: MinMaxScalerTransforms], // returns two functions that can mix max scale new inputs and reverse scale new outputs
StandardScaler: [Function: StandardScaler], // standardization (z-scores)
MinMaxScaler: [Function: MinMaxScaler], // min-max scaling
ExpScaler: [Function: ExpScaler], // exponent scaling
LogScaler: [Function: LogScaler], // natual log scaling
squaredDifference: [Function: squaredDifference], // Returns an array of the squared different of two arrays
standardError: [Function: standardError], // The standard error of the estimate is a measure of the accuracy of predictions made with a regression line
coefficientOfDetermination: [Function: coefficientOfDetermination],
adjustedCoefficentOfDetermination: [Function: adjustedCoefficentOfDetermination],
adjustedRSquared: [Function: adjustedCoefficentOfDetermination],
rBarSquared: [Function: adjustedCoefficentOfDetermination],
r: [Function: coefficientOfCorrelation],
coefficientOfCorrelation: [Function: coefficientOfCorrelation],
rSquared: [Function: rSquared], //r^2
pivotVector: [Function: pivotVector], // returns an array of vectors as an array of arrays
pivotArrays: [Function: pivotArrays], // returns a matrix of values by combining arrays into a matrix
standardScore: [Function: standardScore], // Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.
zScore: [Function: standardScore], // alias for standardScore.
approximateZPercentile: [Function: approximateZPercentile], // approximate the p value from a z score
},
preprocessing: {
DataSet: [Class DataSet],
},
}
Examples (JavaScript / Python / R)
Loading CSV Data
Javascript
import { default as jsk } from 'modelscript';
let dataset;
//In JavaScript, by default most I/O Operations are asynchronous, see the notes section for more
ms.loadCSV('/some/file/path.csv')
.then(csvData=>{
dataset = new ms.DataSet(csvData);
console.log({csvData});
/* csvData [{
'Country': 'Brazil',
'Age': '44',
'Salary': '72000',
'Purchased': 'N',
},
...
{
'Country': 'Mexico',
'Age': '27',
'Salary': '48000',
'Purchased': 'Yes',
}] */
})
.catch(console.error);
// or from URL
ms.loadCSV('https://example.com/some/file/path.csv')
Python
import pandas as pd
#Importing the dataset
dataset = pd.read_csv('/some/file/path.csv')
R
# Importingd the dataset
dataset = read.csv('Data.csv')
Handling Missing Data
Javascript
//column Array returns column of data by name
// [ '44','27','30','38','40','35','','48','50', '37' ]
const OringalAgeColumn = dataset.columnArray('Age');
//column Replace returns new Array with replaced missing data
//[ '44','27','30','38','40','35',38.77777777777778,'48','50','37' ]
const ReplacedAgeMeanColumn = dataset.columnReplace('Age',{strategy:'mean'});
//fit Columns, mutates dataset
dataset.fitColumns({
columns:[{name:'Age',strategy:'mean'}]
});
/*
dataset
class DataSet
data:[
{
'Country': 'Brazil',
'Age': '38.77777777777778',
'Salary': '72000',
'Purchased': 'N',
}
...
]
*/
Python
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
# Taking care of of missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values='NaN', strategy = 'mean', axis=0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
R
# Taking care of the missing data
dataset$Age = ifelse(is.na(dataset$Age),
ave(dataset$Age,FUN = function(x) mean(x,na.rm =TRUE)),
dataset$Age)
One Hot Encoding and Label Encoding
Javascript
// [ 'Brazil','Mexico','Ghana','Mexico','Ghana','Brazil','Mexico','Brazil','Ghana', 'Brazil' ]
const originalCountry = dataset.columnArray('Country');
/*
{ originalCountry:
{ Country_Brazil: [ 1, 0, 0, 0, 0, 1, 0, 1, 0, 1 ],
Country_Mexico: [ 0, 1, 0, 1, 0, 0, 1, 0, 0, 0 ],
Country_Ghana: [ 0, 0, 1, 0, 1, 0, 0, 0, 1, 0 ] },
}
*/
const oneHotCountryColumn = dataset.oneHotEncoder('Country');
// [ 'N', 'Yes', 'No', 'f', 'Yes', 'Yes', 'false', 'Yes', 'No', 'Yes' ]
const originalPurchasedColumn = dataset.labelEncoder('Purchased');
// [ 0, 1, 0, 0, 1, 1, 1, 1, 0, 1 ]
const encodedBinaryPurchasedColumn = dataset.labelEncoder('Purchased',{ binary:true });
// [ 0, 1, 2, 3, 1, 1, 4, 1, 2, 1 ]
const encodedPurchasedColumn = dataset.labelEncoder('Purchased');
// [ 'N', 'Yes', 'No', 'f', 'Yes', 'Yes', 'false', 'Yes', 'No', 'Yes' ]
const decodedPurchased = dataset.labelDecode('Purchased', { data: encodedPurchasedColumn, });
//fit Columns, mutates dataset
dataset.fitColumns({
columns:[
{
name: 'Purchased',
options: {
strategy: 'label',
labelOptions: {
binary: true,
},
},
},
{
name: 'Country',
options: {
strategy: 'onehot',
},
},
]
});
Python
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features=[0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
R
# Encoding categorical data
dataset$Country = factor(dataset$Country,
levels = c('Brazil', 'Mexico', 'Ghana'),
labels = c(1, 2, 3))
dataset$Purchased = factor(dataset$Purchased,
levels = c('No', 'Yes'),
labels = c(0, 1))
Cross Validation
Javascript
const testArray = [20, 25, 10, 33, 50, 42, 19, 34, 90, 23, ];
// { train: [ 50, 20, 34, 33, 10, 23, 90, 42 ], test: [ 25, 19 ] }
const trainTestSplit = ms.cross_validation.train_test_split(testArray,{ test_size:0.2, random_state: 0, });
// [ [ 50, 20, 34, 33, 10 ], [ 23, 90, 42, 19, 25 ] ]
const crossValidationArrayKFolds = ms.cross_validation.cross_validation_split(testArray, { folds: 2, random_state: 0, });
Python
#splitting the dataset into trnaing set and test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
R
# Splitting the dataset into the training set and test set
library(caTools)
set.seed(1)
split = sample.split(dataset$Purchased, SplitRatio = 0.8)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
Scaling (z-score / min-mix)
Javascript
dataset.columnArray('Salary',{ scale:'standard'});
dataset.columnArray('Salary',{ scale:'minmax'});
Python
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
Notes
Check out https://repetere.github.io/modelscript for the full modelscript Documentation
A quick word about asynchronous JavaScript
Most machine learning tutorials in Python and R are not using their asynchronous equivalents; however, there is a bias in JavaScript to default to non-blocking operations.
With the advent of ES7 and Node.js 7+ there are syntax helpers with asynchronous functions. It may be easier to use async/await in JS if you want an approximation close to what a workflow would look like in R/Python
import * as fs from 'fs-extra';
import * as np from 'numjs';
import { default as ml } from 'ml';
import { default as pd } from 'pandas-js';
import { default as mpn } from 'matplotnode';
import { loadCSV, preprocessing } from 'modelscript';
const plt = mpn.plot;
void async () => {
const csvData = await loadCSV('../Data.csv');
const rawData = new preprocessing.DataSet(csvData);
const fittedData = rawData.fitColumns({
columns: [
{ name: 'Age' },
{ name: 'Salary' },
{
name: 'Purchased',
options: {
strategy: 'label',
labelOptions: {
binary: true,
},
}
},
]
});
const dataset = new pd.DataFrame(fittedData);
const X = dataset.iloc(
[ 0, dataset.length ],
[ 0, 3 ]).values;
const y = dataset.iloc(
[ 0, dataset.length ],
3).values;
console.log({
X,
y
});
}();