Package Exports
- @mseep/image-gen-mcp
- @mseep/image-gen-mcp/dist/server.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@mseep/image-gen-mcp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Image Generation MCP Server
An MCP (Model Context Protocol) server implementation for generating images using Replicate's black-forest-labs/flux-schnell model.
Ideally to be used with Cursor's MCP feature, but can be used with any MCP client.
Features
- Generate images from text prompts
- Configurable image parameters (resolution, aspect ratio, quality)
- Save generated images to specified directory
- Full MCP protocol compliance
- Error handling and validation
Prerequisites
- Node.js 16+
- Replicate API token
- TypeScript SDK for MCP
Setup
Clone the repository
Install dependencies:
npm install
Add your Replicate API token directly in the code at
src/imageService.tsby updating theapiTokenconstant:// No environment variables are used since they can't be easily set in cursor const apiToken = "your-replicate-api-token-here";
Note: If using with Claude, you can create a
.envfile in the root directory and set your API token there:REPLICATE_API_TOKEN=your-replicate-api-token-here
Then build the project:
npm run build
Usage
To use with cursor:
- Go to Settings
- Select Features
- Scroll down to "MCP Servers"
- Click "Add new MCP Server"
- Set Type to "Command"
- Set Command to:
node ./path/to/dist/server.js
API Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
prompt |
string | Yes | - | Text prompt for image generation |
output_dir |
string | Yes | - | Server directory path to save generated images |
go_fast |
boolean | No | false | Enable faster generation mode |
megapixels |
string | No | "1" | Resolution quality ("1", "2", "4") |
num_outputs |
number | No | 1 | Number of images to generate (1-4) |
aspect_ratio |
string | No | "1:1" | Aspect ratio ("1:1", "4:3", "16:9") |
output_format |
string | No | "webp" | Image format ("webp", "png", "jpeg") |
output_quality |
number | No | 80 | Compression quality (1-100) |
num_inference_steps |
number | No | 4 | Number of denoising steps (4-20) |
Example Request
{
"prompt": "black forest gateau cake spelling out 'FLUX SCHNELL'",
"output_dir": "/var/output/images",
"filename": "black_forest_cake",
"output_format": "webp"
"go_fast": true,
"megapixels": "1",
"num_outputs": 2,
"aspect_ratio": "1:1"
}Example Response
{
"image_paths": [
"/var/output/images/output_0.webp",
"/var/output/images/output_1.webp"
],
"metadata": {
"model": "black-forest-labs/flux-schnell",
"inference_time_ms": 2847
}
}Error Handling
The server handles the following error types:
- Validation errors (invalid parameters)
- API errors (Replicate API issues)
- Server errors (filesystem, permissions)
- Unknown errors (unexpected issues)
Each error response includes:
- Error code
- Human-readable message
- Detailed error information
License
ISC