JSPM

@mseep/prem-mcp-server

0.1.0
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 1
  • Score
    100M100P100Q27952F

A Model Context Protocol server for Prem AI - enables AI assistants to interact with Prem's ecosystem for chat completions and RAG capabilities.

Package Exports

    This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@mseep/prem-mcp-server) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

    Readme

    Prem MCP Server

    smithery badge

    A Model Context Protocol (MCP) server implementation for Prem AI, enabling seamless integration with Claude and other MCP-compatible clients. This server provides access to Prem AI's powerful features through the MCP interface.

    Features

    • 🤖 Chat Completions: Interact with Prem AI's language models
    • 📚 RAG Support: Retrieval-Augmented Generation with document repository integration
    • 📝 Document Management: Upload and manage documents in repositories
    • 🎭 Template System: Use predefined prompt templates for specialized outputs
    • Streaming Responses: Real-time streaming of model outputs
    • 🛡️ Error Handling: Robust error handling and logging

    Prerequisites

    • Node.js (v16 or higher)
    • A Prem AI account with API key
    • A Prem project ID

    Installation

    Installing via Smithery

    To install prem-mcp-server for Claude Desktop automatically via Smithery:

    npx -y @smithery/cli install @ucalyptus/prem-mcp-server --client claude

    Installing Manually

    # Using npm
    npm install prem-mcp-server
    
    # Using yarn
    yarn add prem-mcp-server
    
    # Using pnpm
    pnpm add prem-mcp-server

    Configuration

    1. Environment Variables

    Create a .env file in your project root:

    PREM_API_KEY=your_api_key_here
    PREM_PROJECT_ID=your_project_id_here

    2. Cursor Configuration

    To use the Prem MCP server with Cursor, add the following to your ~/.cursor/mcp.json:

    {
      "mcpServers": {
        "PremAI": {
          "command": "node",
          "args": ["/path/to/your/prem-mcp/build/index.js", "--stdio"],
          "env": {
            "PREM_API_KEY": "your_api_key_here",
            "PREM_PROJECT_ID": "your_project_id_here"
          }
        }
      }
    }

    Replace /path/to/your/prem-mcp with the actual path to your project directory.

    3. Claude Desktop Configuration

    For Claude Desktop users, add the following to your claude_desktop_config.json:

    {
      "mcpServers": {
        "PremAI": {
          "command": "npx",
          "args": ["prem-mcp-server", "--stdio"],
          "env": {
            "PREM_API_KEY": "your_api_key_here",
            "PREM_PROJECT_ID": "your_project_id_here"
          }
        }
      }
    }

    Usage

    Starting the Server

    npx prem-mcp-server

    Example Prompts

    1. Basic Chat
    Let's have a conversation about artificial intelligence.
    1. RAG with Documents
    Based on the documents in repository XYZ, what are the key points about [topic]?
    1. Using Templates
    Use template ABC to generate [specific type of content].

    Document Upload

    The server supports uploading documents to Prem AI repositories for RAG operations. Supported formats:

    • .txt
    • .pdf
    • .docx

    API Reference

    Chat Completion Parameters

    • query: The input text
    • system_prompt: Custom system prompt
    • model: Model identifier
    • temperature: Response randomness (0-1)
    • max_tokens: Maximum response length
    • repository_ids: Array of repository IDs for RAG
    • similarity_threshold: Threshold for document similarity
    • limit: Maximum number of document chunks

    Template Parameters

    • template_id: ID of the prompt template
    • params: Template-specific parameters
    • temperature: Response randomness (0-1)
    • max_tokens: Maximum response length

    Development

    # Clone the repository
    git clone https://github.com/yourusername/prem-mcp-server.git
    
    # Install dependencies
    npm install
    
    # Build the project
    npm run build
    
    # Run tests
    npm test

    Troubleshooting

    Common Issues

    1. Server Not Found

      • Verify the server path in claude_desktop_config.json
      • Check if the server is running
    2. API Key Invalid

      • Ensure your Prem AI API key is valid
      • Check if the API key has the required permissions
    3. Document Upload Failed

      • Verify file format is supported
      • Check file permissions
      • Ensure repository ID is correct

    Contributing

    Contributions are welcome! Please feel free to submit a Pull Request.

    License

    MIT License - see the LICENSE file for details.

    Acknowledgments

    Support

    For issues and feature requests, please use the GitHub Issues page.