JSPM

@mseep/unsloth-server

1.0.0
    • ESM via JSPM
    • ES Module Entrypoint
    • Export Map
    • Keywords
    • License
    • Repository URL
    • TypeScript Types
    • README
    • Created
    • Published
    • Downloads 2
    • Score
      100M100P100Q19428F
    • License Apache-2.0

    MCP server for Unsloth - a library for optimizing and fine-tuning LLMs

    Package Exports

    • @mseep/unsloth-server
    • @mseep/unsloth-server/build/index.js

    This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@mseep/unsloth-server) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

    Readme

    Unsloth MCP Server

    An MCP server for Unsloth - a library that makes LLM fine-tuning 2x faster with 80% less memory.

    What is Unsloth?

    Unsloth is a library that dramatically improves the efficiency of fine-tuning large language models:

    • Speed: 2x faster fine-tuning compared to standard methods
    • Memory: 80% less VRAM usage, allowing fine-tuning of larger models on consumer GPUs
    • Context Length: Up to 13x longer context lengths (e.g., 89K tokens for Llama 3.3 on 80GB GPUs)
    • Accuracy: No loss in model quality or performance

    Unsloth achieves these improvements through custom CUDA kernels written in OpenAI's Triton language, optimized backpropagation, and dynamic 4-bit quantization.

    Features

    • Optimize fine-tuning for Llama, Mistral, Phi, Gemma, and other models
    • 4-bit quantization for efficient training
    • Extended context length support
    • Simple API for model loading, fine-tuning, and inference
    • Export to various formats (GGUF, Hugging Face, etc.)

    Quick Start

    1. Install Unsloth: pip install unsloth
    2. Install and build the server:
      cd unsloth-server
      npm install
      npm run build
    3. Add to MCP settings:
      {
        "mcpServers": {
          "unsloth-server": {
            "command": "node",
            "args": ["/path/to/unsloth-server/build/index.js"],
            "env": {
              "HUGGINGFACE_TOKEN": "your_token_here" // Optional
            },
            "disabled": false,
            "autoApprove": []
          }
        }
      }

    Available Tools

    check_installation

    Verify if Unsloth is properly installed on your system.

    Parameters: None

    Example:

    const result = await use_mcp_tool({
      server_name: "unsloth-server",
      tool_name: "check_installation",
      arguments: {}
    });

    list_supported_models

    Get a list of all models supported by Unsloth, including Llama, Mistral, Phi, and Gemma variants.

    Parameters: None

    Example:

    const result = await use_mcp_tool({
      server_name: "unsloth-server",
      tool_name: "list_supported_models",
      arguments: {}
    });

    load_model

    Load a pretrained model with Unsloth optimizations for faster inference and fine-tuning.

    Parameters:

    • model_name (required): Name of the model to load (e.g., "unsloth/Llama-3.2-1B")
    • max_seq_length (optional): Maximum sequence length for the model (default: 2048)
    • load_in_4bit (optional): Whether to load the model in 4-bit quantization (default: true)
    • use_gradient_checkpointing (optional): Whether to use gradient checkpointing to save memory (default: true)

    Example:

    const result = await use_mcp_tool({
      server_name: "unsloth-server",
      tool_name: "load_model",
      arguments: {
        model_name: "unsloth/Llama-3.2-1B",
        max_seq_length: 4096,
        load_in_4bit: true
      }
    });

    finetune_model

    Fine-tune a model with Unsloth optimizations using LoRA/QLoRA techniques.

    Parameters:

    • model_name (required): Name of the model to fine-tune
    • dataset_name (required): Name of the dataset to use for fine-tuning
    • output_dir (required): Directory to save the fine-tuned model
    • max_seq_length (optional): Maximum sequence length for training (default: 2048)
    • lora_rank (optional): Rank for LoRA fine-tuning (default: 16)
    • lora_alpha (optional): Alpha for LoRA fine-tuning (default: 16)
    • batch_size (optional): Batch size for training (default: 2)
    • gradient_accumulation_steps (optional): Number of gradient accumulation steps (default: 4)
    • learning_rate (optional): Learning rate for training (default: 2e-4)
    • max_steps (optional): Maximum number of training steps (default: 100)
    • dataset_text_field (optional): Field in the dataset containing the text (default: 'text')
    • load_in_4bit (optional): Whether to use 4-bit quantization (default: true)

    Example:

    const result = await use_mcp_tool({
      server_name: "unsloth-server",
      tool_name: "finetune_model",
      arguments: {
        model_name: "unsloth/Llama-3.2-1B",
        dataset_name: "tatsu-lab/alpaca",
        output_dir: "./fine-tuned-model",
        max_steps: 100,
        batch_size: 2,
        learning_rate: 2e-4
      }
    });

    generate_text

    Generate text using a fine-tuned Unsloth model.

    Parameters:

    • model_path (required): Path to the fine-tuned model
    • prompt (required): Prompt for text generation
    • max_new_tokens (optional): Maximum number of tokens to generate (default: 256)
    • temperature (optional): Temperature for text generation (default: 0.7)
    • top_p (optional): Top-p for text generation (default: 0.9)

    Example:

    const result = await use_mcp_tool({
      server_name: "unsloth-server",
      tool_name: "generate_text",
      arguments: {
        model_path: "./fine-tuned-model",
        prompt: "Write a short story about a robot learning to paint:",
        max_new_tokens: 512,
        temperature: 0.8
      }
    });

    export_model

    Export a fine-tuned Unsloth model to various formats for deployment.

    Parameters:

    • model_path (required): Path to the fine-tuned model
    • export_format (required): Format to export to (gguf, ollama, vllm, huggingface)
    • output_path (required): Path to save the exported model
    • quantization_bits (optional): Bits for quantization (for GGUF export) (default: 4)

    Example:

    const result = await use_mcp_tool({
      server_name: "unsloth-server",
      tool_name: "export_model",
      arguments: {
        model_path: "./fine-tuned-model",
        export_format: "gguf",
        output_path: "./exported-model.gguf",
        quantization_bits: 4
      }
    });

    Advanced Usage

    Custom Datasets

    You can use custom datasets by formatting them properly and hosting them on Hugging Face or providing a local path:

    const result = await use_mcp_tool({
      server_name: "unsloth-server",
      tool_name: "finetune_model",
      arguments: {
        model_name: "unsloth/Llama-3.2-1B",
        dataset_name: "json",
        data_files: {"train": "path/to/your/data.json"},
        output_dir: "./fine-tuned-model"
      }
    });

    Memory Optimization

    For large models on limited hardware:

    • Reduce batch size and increase gradient accumulation steps
    • Use 4-bit quantization
    • Enable gradient checkpointing
    • Reduce sequence length if possible

    Troubleshooting

    Common Issues

    1. CUDA Out of Memory: Reduce batch size, use 4-bit quantization, or try a smaller model
    2. Import Errors: Ensure you have the correct versions of torch, transformers, and unsloth installed
    3. Model Not Found: Check that you're using a supported model name or have access to private models

    Version Compatibility

    • Python: 3.10, 3.11, or 3.12 (not 3.13)
    • CUDA: 11.8 or 12.1+ recommended
    • PyTorch: 2.0+ recommended

    Performance Benchmarks

    Model VRAM Unsloth Speed VRAM Reduction Context Length
    Llama 3.3 (70B) 80GB 2x faster >75% 13x longer
    Llama 3.1 (8B) 80GB 2x faster >70% 12x longer
    Mistral v0.3 (7B) 80GB 2.2x faster 75% less -

    Requirements

    • Python 3.10-3.12
    • NVIDIA GPU with CUDA support (recommended)
    • Node.js and npm

    License

    Apache-2.0