JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 4
  • Score
    100M100P100Q112959F
  • License MIT

BMAD-BUFF: Enhanced BMAD-METHODβ„’ with Multi-LLM Orchestration via BUFF Router and ROMA Orchestrator

Package Exports

    This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@papuman/bmad-buff) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

    Readme

    BMAD-BUFF System πŸš€

    Revolutionary Multi-LLM Orchestration for 10x Faster AI-Driven Development

    npm version License: MIT Node.js Version

    🎯 What is BMAD-BUFF?

    BMAD-BUFF is an advanced orchestration system built on top of the BMAD-METHODβ„’ that intelligently distributes development tasks across multiple specialized LLMs (Claude, GPT, Gemini, Perplexity) to achieve unprecedented development speed and quality.

    Key Features

    • 🧠 Multi-LLM Orchestration: Automatically routes tasks to the most suitable LLM
    • ⚑ 10x Faster Development: Parallel execution across multiple AI providers
    • πŸ’° Cost Optimization: Uses cheaper models for simple tasks, premium for complex
    • πŸ”„ ROMA Integration: Recursive task decomposition and orchestration
    • 🎭 BUFF Routing: Intelligent load balancing across providers
    • πŸš€ YOLO Mode: Skip confirmations while maintaining quality
    • πŸ“Š Vector Database: Enhanced context with ChromaDB/Vectra

    πŸ—οΈ Architecture

    BMAD-BUFF System
    β”œβ”€β”€ ROMA Orchestrator (Task Decomposition)
    β”œβ”€β”€ BUFF Router (LLM Selection)
    β”œβ”€β”€ Agent Spawner (Specialized Agents)
    └── Vector Database (Context Enhancement)

    πŸ“¦ Installation

    npm install -g bmad-buff-system

    Or clone and install locally:

    git clone https://github.com/papuman/bmad-buff-system.git
    cd bmad-buff-system
    npm install
    npm run setup

    πŸ”§ Configuration

    1. Create a .env file in expansion-packs/bmad-buff/:
    # Required API Keys
    OPENAI_API_KEY=your_openai_key
    GEMINI_API_KEY=your_gemini_key
    PERPLEXITY_API_KEY=your_perplexity_key
    
    # Optional
    ANTHROPIC_API_KEY=your_anthropic_key  # Only if not using Claude Code
    1. The system automatically detects and uses available LLMs based on configured API keys.

    πŸš€ Usage

    Basic Usage

    const { BMADWorkflow } = require('bmad-buff-system');
    
    const workflow = new BMADWorkflow({
      project: 'Build AI-powered app',
      requirements: ['auth', 'api', 'frontend', 'ml-pipeline']
    });
    
    await workflow.execute();

    CLI Usage

    # Start BMAD workflow
    bmad start "Build a social media analytics platform"
    
    # Enable YOLO mode (skip confirmations)
    bmad start --yolo "Create REST API with auth"
    
    # Use specific LLM strategy
    bmad start --strategy multi-llm "Complex project"

    🎯 LLM Specialization

    BMAD-BUFF automatically assigns tasks to specialized LLMs:

    Task Type Preferred LLM Why
    Code Implementation Claude Opus Best for complex coding
    Architecture Design Gemini Pro Deep thinking & planning
    Strategic Planning GPT-5 Advanced reasoning
    Research & Docs Perplexity Real-time web search
    Quick Validation Gemini Flash Fast execution
    Frontend Claude Sonnet UI/UX development
    Simple Tasks GPT-3.5 Cost-effective

    πŸ“Š Performance Benefits

    Multi-LLM vs Single-LLM

    • 4x better rate limit capacity - Distribute load across providers
    • 60% faster execution - Parallel processing
    • 30% cost reduction - Smart model selection
    • 99.9% uptime - Fallback chains ensure reliability

    πŸ”„ Workflow Example

    // BMAD-BUFF automatically:
    // 1. Decomposes your project into tasks
    // 2. Assigns optimal LLM to each task
    // 3. Spawns specialized agents
    // 4. Executes in parallel
    // 5. Manages dependencies
    
    const project = {
      name: "E-commerce Platform",
      tasks: [
        "Design database schema",      // β†’ Gemini Pro
        "Build authentication API",     // β†’ Claude Opus
        "Create React components",      // β†’ Claude Sonnet
        "Research payment gateways",    // β†’ Perplexity
        "Write unit tests",            // β†’ Claude Opus
        "Generate documentation"       // β†’ Perplexity
      ]
    };
    
    // All handled automatically!
    await bmadBuff.execute(project);

    πŸ› οΈ Advanced Features

    YOLO Mode

    Skip confirmations while maintaining quality:

    workflow.enableYolo(); // Move fast, break nothing

    Vector Database Integration

    Enhanced context with persistent memory:

    workflow.enableVectorDB({
      type: 'chromadb',
      collections: ['patterns', 'solutions']
    });

    Custom Agent Templates

    Define specialized agents:

    workflow.registerAgent({
      name: 'SecurityExpert',
      model: 'gpt-4',
      skills: ['penetration-testing', 'code-audit']
    });

    πŸ“ˆ Monitoring & Analytics

    Track your development metrics:

    • Tasks completed per hour
    • LLM usage distribution
    • Cost optimization savings
    • Performance bottlenecks

    🀝 Contributing

    We welcome contributions! Please see CONTRIBUTING.md for details.

    πŸ“„ License

    MIT License - see LICENSE for details.

    πŸ™ Acknowledgments

    • Built on top of the BMAD-METHODβ„’ framework
    • Inspired by ROMA and Codebuff methodologies
    • Built for the Claude Code community
    • Powered by OpenAI, Anthropic, Google, and Perplexity

    🚨 Support


    Built with ❀️ by Javier Carrillo (papuman)

    Revolutionizing AI-driven development, one task at a time.