JSPM

@polybiouslabs/polybious

1.1.0
    • ESM via JSPM
    • ES Module Entrypoint
    • Export Map
    • Keywords
    • License
    • Repository URL
    • TypeScript Types
    • README
    • Created
    • Published
    • Downloads 5
    • Score
      100M100P100Q36359F
    • License MIT

    Polybius is a next-generation intelligent agent framework built for adaptability across diverse domains. It merges contextual awareness, multi-agent collaboration, and predictive reasoning to deliver dynamic, self-optimizing performance.

    Package Exports

    • @polybiouslabs/polybious

    Readme

    Polybius: Multi-Domain Cognitive Agent Framework

    Polybius is an adaptive, multi-domain intelligent agent framework designed for contextual awareness, predictive reasoning, and real-time collaboration between agents. It combines memory, multi-agent coordination, and explainable AI to deliver reliable, self-optimizing performance.

    Core Features

    • Contextual Memory Matrix – Stores and recalls layered situational data, preserving both facts and relationships over time.
    • Multi-Agent Collaboration Hub – Enables specialized agents to share insights and coordinate actions in real time.
    • Scenario Simulation Engine – Runs “what-if” simulations to forecast outcomes before executing tasks.
    • Adaptive Skill Loader – Dynamically attaches or removes tools (translation, data mining, generative media, etc.) as needed.
    • Behavioral Evolution Model – Improves decision-making using reinforcement learning and live feedback.
    • Explainable AI Layer – Generates transparent, human-readable reasoning for predictions and actions.

    Installation

    npm install
    npm test                   # Run test suite
    npm run dev                # Development mode  
    npm start                  # Production mode

    Quick Start

    import { ContextualMemoryMatrix } from './src/core/memory';
    import { CollaborationHub } from './src/core/collaboration';
    import { ScenarioSimulationEngine } from './src/core/simulation';
    
    const memory = new ContextualMemoryMatrix();
    const hub = new CollaborationHub();
    const simulator = new ScenarioSimulationEngine();
    
    // Store contextual experience
    await memory.store('mission', {task: 'Data mining operation'}, 0.85, ['analytics', 'ai']);
    
    // Enable agent collaboration
    hub.registerAgent('analysisAgent', {capabilities: ['data-processing', 'trend-detection']});
    hub.registerAgent('reportAgent', {capabilities: ['summary-generation', 'visualization']});
    hub.connectAgents('analysisAgent', 'reportAgent');
    
    // Simulate an outcome
    const outcome = await simulator.runScenario('Market prediction for Q4');
    console.log(`Predicted trend: ${outcome.trend}, Confidence: ${outcome.confidence}`);

    Configuration

    {
      "name": "PolybiusCore",
      "personality": {
        "systemPrompt": "Multi-domain AI strategist with adaptive learning capabilities",
        "emotionalRange": {
          "creativity": 0.75,
          "analytical": 0.95,
          "empathy": 0.55,
          "humor": 0.35,
          "enthusiasm": 0.85
        },
        "tools": [
          {"name": "data_mining", "enabled": true},
          {"name": "scenario_simulation", "enabled": true},
          {"name": "sentiment_analysis", "enabled": true}
        ],
        "learningRate": 0.4,
        "memoryCapacity": 2000
      }
    }

    API Reference

    Contextual Memory

    await memory.store(type, data, importance, tags);
    const recallData = await memory.recall('query', limit);
    const insights = await memory.generateInsights();

    Multi-Agent Collaboration

    hub.registerAgent(name, config);
    hub.connectAgents(agentA, agentB);
    hub.broadcastMessage('analysisAgent', {topic: 'status-update'});

    Scenario Simulation

    const result = await simulator.runScenario(description);
    await simulator.trainModel(historicalData);
    const recommendations = await simulator.getRecommendations(currentState);

    Examples

    • examples/basic-agent.json – Minimal setup for single-agent tasks
    • examples/collaborative-agents.json – Multi-agent coordination
    • examples/predictive-strategist.json – High analytical reasoning with forecasting

    Testing

    The test suite covers:

    • Contextual memory with relationship mapping
    • Multi-agent coordination and communication
    • Scenario simulation accuracy
    • Adaptive skill loading behavior
    • Explainable AI reasoning output
    • No external API dependencies

    Architecture

    • Core: Contextual memory, multi-agent hub, simulation engine
    • Tools: Data mining, sentiment analysis, scenario forecasting
    • Config: Personality modeling with adaptive behaviors
    • Tests: Comprehensive internal coverage with no external calls