JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 426
  • Score
    100M100P100Q120175F
  • License Apache-2.0

The OpenAI backend module for the @roadiehq/rag-ai plugin.

Package Exports

  • @roadiehq/rag-ai-backend-embeddings-openai
  • @roadiehq/rag-ai-backend-embeddings-openai/dist/index.cjs.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@roadiehq/rag-ai-backend-embeddings-openai) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

RAG AI Backend-embeddings OpenAI submodule

This is a submodule for the @roadiehq/rag-ai-backend module, which provides functionality to use OpenAI embeddings to generate a RAG AI Backend plugin for Backstage. It exposes configuration options to configure OpenAI API token and wanted embeddings model, as well as the parameters for the model.

Initialization

const vectorStore = await createRoadiePgVectorStore({ logger, database });

const augmentationIndexer = await initializeOpenAiEmbeddings({
  logger,
  catalogApi,
  auth,
  vectorStore,
  discovery,
  config,
});

Configuration Options

The module expects an API Token, the name of the embeddings generative AI model and its configuration options to be configured via app-config.

You can generate an API Token in here: https://platform.openai.com/api-keys

ai:
  embeddings:
    # OpenAI Embeddings configuration
    openai:
      # (Optional) The API key for accessing OpenAI services. Defaults to process.env.OPENAI_API_KEY
      openAiApiKey: 'sk-123...'

      # (Optional) Specify URL of self-hosted OpenAI compliant endpoint. Defaults to OpenAI's public API https://api.openai.com
      openAiBaseUrl: ''

      # (Optional) Name of the OpenAI model to use to create Embeddings. Defaults to text-embedding-3-large
      modelName: 'text-embedding-3-large'

      # The size of the batch to use when creating embeddings. Defaults to 512, max is 2048
      batchSize: 512

      # The number of dimensions to generate. Defaults to use the default value from the chosen model
      embeddingsDimensions: 3072
Example minimal configuration
ai:
  embeddings:
    openAI: {} # uses env variable OPENAI_API_KEY for API key, model 'text-embedding-3-large' for embeddings creation model

Roadie gives you a hassle-free, fully customisable SaaS Backstage. Find out more here: https://roadie.io.