JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 103
  • Score
    100M100P100Q104295F
  • License MIT

Production-ready orchestration framework for Claude Desktop with 30+ specialized agents, smart hooks, vector memory, and autonomous workflows

Package Exports

    This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@servesys-labs/claude-agents) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

    Readme

    Claude Code Orchestration Framework

    Production-ready orchestration with Vector RAG Memory

    Version: 1.4.0 | 📖 Quick Start → | ⚡ 5-Minute Setup


    🎯 The Killer Feature: Vector RAG Memory

    Claude remembers everything across sessions. Your agents build institutional knowledge.

    You: "Add authentication to the API"
    Agent: Searches past work → Finds "We use JWT with refresh tokens (users.service.ts)"
           ↓
    Agent: Implements auth matching your existing patterns (no reinventing the wheel)

    How it works:

    1. 📝 Subagents return structured DIGEST blocks (decisions, files changed, contracts)
    2. 💾 DIGEST auto-stored in pgvector/Supabase/Pinecone (your choice)
    3. 🔍 New tasks → RAG search suggests relevant past work
    4. ✨ Agents build on what you already have (coherent codebase, no drift)

    Supported Backends (drop-in):

    • pgvector (PostgreSQL + pgvector extension) - Self-hosted, free
    • Supabase (Managed pgvector) - Just add SUPABASE_URL + SUPABASE_KEY
    • Pinecone (Managed vector DB) - Just add PINECONE_API_KEY

    Zero vector DB knowledge required. Just paste an API key and go.


    🚀 New in v1.4.0 - Zero Configuration!

    • Automatic Per-Project Setup: First use auto-creates .claude/logs/, updates .gitignore, creates NOTES.md
    • Zero Manual Work: Just install globally once, then use Claude Code in any project
    • Smart Detection: Auto-detects projects (git repos, package.json, pyproject.toml, etc.)
    • Runs Once: Creates .claude/.setup_complete marker to skip future setup
    • Vector RAG Ready: Auto-configures memory ingestion and retrieval hooks

    What's Included

    🎯 Vector RAG Memory System (The Star Feature)

    • Auto-Ingestion: Every DIGEST block automatically stored in vector DB
    • Smart Retrieval: RAG search suggests relevant past work on every new task
    • Multi-Backend: Drop-in support for Supabase, Pinecone, or self-hosted pgvector
    • Zero Config: Just set environment variables - framework handles the rest
    • Cross-Project Memory: Search across all your projects (global knowledge base)
    • Privacy First: Self-hosted option (pgvector) keeps your data on your infrastructure

    Core Components

    • 40+ Specialized Agents: Implementation planner, requirements clarifier, code navigator, implementation engineer, test author, security auditor, and more
    • DIGEST-Based Context: Structured JSON summaries (not giant transcript dumps)
    • 12+ Automation Hooks: Pre/Post tool use hooks for validation, cost tracking, DIGEST capture, and quality gates
    • Pivot Tracking System: Detect direction changes, validate FEATURE_MAP updates, auto-audit obsolete code
    • Multi-Model Brainstorming: Claude + GPT-5 dialogue for strategic planning
    • Cost Tracking: Automatic cost display for OpenAI and Perplexity API calls
    • Pre-Merge Quality Gate: Bash script for comprehensive pre-merge validation
    • MD Spam Prevention: Enforces documentation policy to prevent file sprawl

    Hook Scripts (hooks/)

    • pretooluse_validate.py - Validate permissions, check budgets
    • posttooluse_validate.py - Lint/typecheck after edits
    • checkpoint_manager.py - Auto-checkpoint before risky operations
    • pivot_detector.py - Detect direction changes
    • feature_map_validator.py - Validate FEATURE_MAP updates
    • log_analyzer.py - Suggest specialized agents
    • task_digest_capture.py - Capture subagent DIGEST blocks
    • precompact_summary.py - Generate compaction summaries
    • gpt5_cost_tracker.py - Track OpenAI API costs
    • perplexity_tracker.py - Track Perplexity API costs
    • md_spam_preventer.py - Prevent documentation sprawl
    • ready-to-merge.sh - Pre-merge quality gate script

    Agent Definitions (agents/)

    All 40+ specialized agent definitions for routing and delegation.

    Configuration

    • CLAUDE.md - Global orchestration instructions
    • settings.json - Hook registrations
    • FEATURE_MAP.template.md - Project template

    MCP Servers (Optional)

    • openai-bridge - Multi-model brainstorming with GPT-5
    • postgres-bridge - Read-only database queries with AI-generated SQL
    • vector-bridge - Vector RAG memory (pgvector/Supabase/Pinecone backends)

    5-Minute Setup with Vector RAG

    Option 1: Supabase (Easiest - Managed, Free Tier)

    # 1. Install framework
    npm install -g claude-orchestration-framework
    bash ~/.npm-global/lib/node_modules/claude-orchestration-framework/install.sh
    
    # 2. Create Supabase project at https://supabase.com (free tier)
    #    Enable pgvector extension in Database → Extensions
    
    # 3. Add to ~/.zshrc or ~/.bashrc (or use .envrc with direnv)
    export SUPABASE_URL="https://your-project.supabase.co"
    export SUPABASE_SERVICE_KEY="your-service-role-key"
    export ENABLE_VECTOR_RAG=true
    
    # 4. Reload shell
    source ~/.zshrc
    
    # 5. Done! Open Claude Code in any project - RAG memory is active

    Get your keys:

    • SUPABASE_URL: Project Settings → API → Project URL
    • SUPABASE_SERVICE_KEY: Project Settings → API → service_role key (keep secret!)

    Option 2: Pinecone (Serverless, Simple API)

    # 1. Install framework (same as above)
    npm install -g claude-orchestration-framework
    bash ~/.npm-global/lib/node_modules/claude-orchestration-framework/install.sh
    
    # 2. Create Pinecone index at https://www.pinecone.io (free tier)
    #    Index name: "claude-memory"
    #    Dimensions: 1536 (OpenAI embeddings)
    #    Metric: cosine
    
    # 3. Add to ~/.zshrc or ~/.bashrc
    export PINECONE_API_KEY="your-api-key"
    export PINECONE_INDEX="claude-memory"
    export ENABLE_VECTOR_RAG=true
    
    # 4. Reload and go
    source ~/.zshrc

    Get your API key:

    • Pinecone Dashboard → API Keys → Create Key

    Option 3: Self-Hosted pgvector (Full Control)

    # 1. Install framework (same as above)
    
    # 2. Set up PostgreSQL with pgvector
    docker run -d \
      -e POSTGRES_PASSWORD=yourpassword \
      -e POSTGRES_DB=claude_memory \
      -p 5432:5432 \
      ankane/pgvector
    
    # 3. Add to ~/.zshrc or ~/.bashrc
    export DATABASE_URL_MEMORY="postgresql://postgres:yourpassword@localhost:5432/claude_memory"
    export ENABLE_VECTOR_RAG=true
    
    # 4. Reload
    source ~/.zshrc

    Verify RAG is Working

    # In any project, run a task with subagent
    # Example: Ask Claude to "implement user authentication"
    # After task completes, check NOTES.md - you'll see DIGEST blocks
    cat NOTES.md
    
    # Future sessions will reference past work automatically!

    Installation

    Linux/macOS:

    npm install -g claude-orchestration-framework
    bash ~/.npm-global/lib/node_modules/claude-orchestration-framework/install.sh

    Windows (PowerShell):

    npm install -g claude-orchestration-framework
    powershell -ExecutionPolicy Bypass -File "$env:APPDATA\npm\node_modules\claude-orchestration-framework\install.ps1"

    What the Installer Does

    1. Backs up existing installation (if any)
    2. Installs hooks to ~/.claude/hooks/ (version-controlled)
    3. Installs agents to ~/.claude/agents/
    4. Configures settings.json (with merge option)
    5. Sets up environment variables
    6. Optionally installs MCP servers (postgres-bridge, vector-bridge, openai-bridge)

    Manual Installation

    If you prefer manual installation:

    Linux/macOS:

    1. Clone or download the package
    2. Run: bash install.sh

    Windows:

    1. Clone or download the package
    2. Run: powershell -ExecutionPolicy Bypass -File install.ps1

    Post-Installation

    1. Validate Installation

    Quick automated check:

    bash smoke-test.sh

    Comprehensive validation: See INSTALLATION_VALIDATION.md for detailed checklist and smoke tests.

    2. Set Up API Keys (Optional)

    For multi-model brainstorming and live data searches:

    export OPENAI_API_KEY='sk-...'
    export PERPLEXITY_API_KEY='pplx-...'

    2. Enable RAG Loop (Optional)

    For vector memory and DIGEST ingestion:

    Linux/macOS:

    export ENABLE_VECTOR_RAG=true
    export DATABASE_URL_MEMORY='postgresql://user:pass@host:port/database'
    export REDIS_URL='redis://host:port'

    Windows:

    $env:ENABLE_VECTOR_RAG = 'true'
    $env:DATABASE_URL_MEMORY = 'postgresql://user:pass@host:port/database'
    $env:REDIS_URL = 'redis://host:port'

    3. Create FEATURE_MAP.md in Your Project

    Linux/macOS:

    cd ~/your-project
    cp ~/.claude/FEATURE_MAP.template.md FEATURE_MAP.md

    Windows:

    cd C:\your-project
    Copy-Item "$env:USERPROFILE\.claude\FEATURE_MAP.template.md" ".\FEATURE_MAP.md"

    Edit FEATURE_MAP.md to track your project's features and pivots.

    4. Test the Installation

    Linux/macOS:

    # Check hooks are working
    python3 ~/.claude/hooks/checkpoint_manager.py list
    
    # Run pre-merge check
    cd ~/your-project
    bash ~/.claude/hooks/ready-to-merge.sh

    Windows:

    # Check hooks are working
    python "$env:USERPROFILE\.claude\hooks\checkpoint_manager.py" list
    
    # Run pre-merge check (requires Git Bash or WSL)
    cd C:\your-project
    bash "$env:USERPROFILE\.claude\hooks\ready-to-merge.sh"

    Usage

    Main Agent Routing

    The Main Agent automatically routes tasks to specialized subagents:

    • Complex features → Implementation Planner
    • Vague requests → Requirements Clarifier
    • Code changes → Code Navigator + Implementation Engineer
    • Testing → Test Author
    • Security → Security Auditor
    • Performance → Performance Optimizer

    Pivot Workflow

    1. Change direction: "Actually, let's use Railway instead of Supabase"
    2. Hook detects pivot, shows warning
    3. Update FEATURE_MAP.md manually
    4. Say: "I've updated FEATURE_MAP. Run the pivot cleanup workflow."
    5. Main Agent auto-invokes Relevance Auditor → Auto-Doc Updater

    Pre-Merge Quality Gate

    cd ~/your-project
    bash ~/claude-hooks/ready-to-merge.sh
    
    # With auto-fix for linting
    bash ~/claude-hooks/ready-to-merge.sh --auto-fix

    Multi-Model Brainstorming

    Say "brainstorm alternatives" or mention comparing approaches. Main Agent will invoke Multi-Model Brainstormer (Claude + GPT-5 dialogue).

    Checkpoint Management

    # List checkpoints
    python3 ~/claude-hooks/checkpoint_manager.py list
    
    # Restore a checkpoint
    python3 ~/claude-hooks/checkpoint_manager.py restore <checkpoint-id>

    Features

    Automatic Hooks

    • PreToolUse: Permission validation, budget checks
    • PostToolUse: Lint/typecheck after edits, cost tracking, DIGEST capture
    • UserPromptSubmit: Agent suggestions, pivot detection, FEATURE_MAP validation
    • PreCompact: Generate summary before compaction
    • Stop: Extract final DIGEST (fallback)

    Pivot Tracking (4 Layers)

    1. FEATURE_MAP.md - Single source of truth
    2. pivot_detector.py - Auto-detect direction changes
    3. Relevance Auditor - Find obsolete code
    4. Auto-Doc Updater - Sync all documentation

    Cost Tracking

    Automatically displays costs for:

    • OpenAI API calls (GPT-5, GPT-4o, etc.)
    • Perplexity API calls (sonar, sonar-pro, sonar-reasoning)

    Quality Gates

    • Pre-merge validation (lint, typecheck, tests, build)
    • Integration cohesion audits
    • Production readiness verification

    Documentation

    • Global Config: ~/.claude/CLAUDE.md
    • Agent Roster: ~/.claude/agents/*.md
    • Hook Scripts: ~/.claude/hooks/*.py
    • Project Template: ~/.claude/FEATURE_MAP.template.md
    • Logs Migration: See LOGS_MIGRATION.md for per-project log configuration

    Troubleshooting

    Hooks Not Running

    1. Check ~/.claude/settings.json has hook registrations
    2. Verify scripts are executable: chmod +x ~/claude-hooks/*.py
    3. Check Python version: python3 --version (need 3.8+)

    MCP Servers Not Working

    1. Rebuild: cd ~/.claude/mcp-servers/openai-bridge && npm install && npm run build
    2. Check API keys are set in environment
    3. Restart Claude Code

    DIGEST Blocks Not Captured

    1. Check NOTES.md exists in project root
    2. Verify task_digest_capture.py hook is registered
    3. Run subagents via Task tool (not direct work)

    Updating

    To update to a new version:

    1. Download new package
    2. Run bash install.sh (will backup existing)
    3. Review changes in ~/.claude/settings.json.backup

    Uninstalling

    rm -rf ~/claude-hooks
    rm -rf ~/.claude/agents
    # Manually remove hook registrations from ~/.claude/settings.json
    # Manually remove CLAUDE.md from ~/.claude/

    Support

    For issues or questions:

    • Check documentation in ~/.claude/CLAUDE.md
    • Review agent definitions in ~/.claude/agents/
    • Check hook debug logs in ~/claude-hooks/logs/

    Version History

    1.0.0 (October 2025)

    • Initial release
    • 40+ agents
    • 12+ hooks
    • Pivot tracking system
    • Multi-model brainstorming
    • Cost tracking
    • Pre-merge quality gates

    License

    [Your License Here]


    Happy Coding! 🚀