JSPM

@stdlib/math-base-special-cinvf

0.1.1
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 154
  • Score
    100M100P100Q76034F
  • License Apache-2.0

Compute the inverse of a single-precision complex floating-point number.

Package Exports

  • @stdlib/math-base-special-cinvf
  • @stdlib/math-base-special-cinvf/dist
  • @stdlib/math-base-special-cinvf/dist/index.js
  • @stdlib/math-base-special-cinvf/lib/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/math-base-special-cinvf) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

cinvf

NPM version Build Status Coverage Status

Compute the inverse of a single-precision complex floating-point number.

The inverse (or reciprocal) of a non-zero complex number z = a + bi is defined as

Installation

npm install @stdlib/math-base-special-cinvf

Usage

var cinvf = require( '@stdlib/math-base-special-cinvf' );

cinvf( z )

Computes the inverse of a single-precision complex floating-point number.

var Complex64 = require( '@stdlib/complex-float32-ctor' );

var v = cinvf( new Complex64( 2.0, 4.0 ) );
// returns <Complex64>[ ~0.1, ~-0.2 ]

Examples

var Complex64Array = require( '@stdlib/array-complex64' );
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var cinvf = require( '@stdlib/math-base-special-cinvf' );

// Create an array of random numbers:
var arr = new Complex64Array( uniform( 200, -100.0, 100.0 ) );

// Compute the inverse of each number in the array:
logEachMap( '1.0 / (%s) = %s', arr, cinvf );

C APIs

Usage

#include "stdlib/math/base/special/cinvf.h"

stdlib_base_cinvf( z )

Computes the inverse of a single-precision complex floating-point number.

#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/real.h"
#include "stdlib/complex/float32/imag.h"

stdlib_complex64_t z = stdlib_complex64( 2.0f, 4.0f );

stdlib_complex64_t out = stdlib_base_cinvf( z );

float re = stdlib_complex64_real( out );
// returns 0.1f

float im = stdlib_complex64_imag( out );
// returns -0.2f

The function accepts the following arguments:

  • z: [in] stdlib_complex64_t input value.
stdlib_complex64_t stdlib_base_cinvf( const stdlib_complex64_t z );

Examples

#include "stdlib/math/base/special/cinvf.h"
#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/reim.h"
#include <stdio.h>

int main( void ) {
    const stdlib_complex64_t x[] = {
        stdlib_complex64( 3.14f, 1.5f ),
        stdlib_complex64( -3.14f, -1.5f ),
        stdlib_complex64( 0.0f, 0.0f ),
        stdlib_complex64( 0.0f/0.0f, 0.0f/0.0f )
    };

    stdlib_complex64_t v;
    stdlib_complex64_t y;
    float re1;
    float im1;
    float re2;
    float im2;
    int i;
    for ( i = 0; i < 4; i++ ) {
        v = x[ i ];
        y = stdlib_base_cinvf( v );
        stdlib_complex64_reim( v, &re1, &im1 );
        stdlib_complex64_reim( y, &re2, &im2 );
        printf( "cinvf(%f + %fi) = %f + %fi\n", re1, im1, re2, im2 );
    }
}

References

  • Smith, Robert L. 1962. "Algorithm 116: Complex Division." Commun. ACM 5 (8). New York, NY, USA: ACM: 435. doi:10.1145/368637.368661.
  • Stewart, G. W. 1985. "A Note on Complex Division." ACM Trans. Math. Softw. 11 (3). New York, NY, USA: ACM: 238–41. doi:10.1145/214408.214414.
  • Priest, Douglas M. 2004. "Efficient Scaling for Complex Division." ACM Trans. Math. Softw. 30 (4). New York, NY, USA: ACM: 389–401. doi:10.1145/1039813.1039814.
  • Baudin, Michael, and Robert L. Smith. 2012. "A Robust Complex Division in Scilab." arXiv abs/1210.4539 [cs.MS] (October): 1–25. <https://arxiv.org/abs/1210.4539>.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright © 2016-2026. The Stdlib Authors.