JSPM

@stdlib/math-base-special-dirichlet-eta

0.3.1
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 223
  • Score
    100M100P100Q82546F
  • License Apache-2.0

Dirichlet eta function.

Package Exports

  • @stdlib/math-base-special-dirichlet-eta
  • @stdlib/math-base-special-dirichlet-eta/dist
  • @stdlib/math-base-special-dirichlet-eta/dist/index.js
  • @stdlib/math-base-special-dirichlet-eta/lib/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/math-base-special-dirichlet-eta) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Dirichlet Eta Function

NPM version Build Status Coverage Status

Dirichlet eta function.

The Dirichlet eta function is defined by the Dirichlet series

Dirichlet eta function
-->

where s is a complex variable equal to σ + ti. The series is convergent for all complex numbers having a real part greater than 0.

Note that the Dirichlet eta function is also known as the alternating zeta function and denoted ζ*(s). The series is an alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta function. Accordingly, the following relation holds:

where ζ(s) is the Riemann zeta function.

Installation

npm install @stdlib/math-base-special-dirichlet-eta

Usage

var eta = require( '@stdlib/math-base-special-dirichlet-eta' );

eta( s )

Evaluates the Dirichlet eta function for a double-precision floating-point number s.

var v = eta( 0.0 ); // Abel sum of 1-1+1-1+...
// returns 0.5

v = eta( -1.0 ); // Abel sum of 1-2+3-4+...
// returns 0.25

v = eta( 1.0 ); // alternating harmonic series => ln(2)
// returns 0.6931471805599453

v = eta( 3.14 );
// returns ~0.9096

v = eta( NaN );
// returns NaN

Examples

var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var eta = require( '@stdlib/math-base-special-dirichlet-eta' );

var opts = {
    'dtype': 'float64'
};
var s = uniform( 200, -50.0, 50.0, opts );

logEachMap( 's: %0.4f, η(s): %0.4f', s, eta );

C APIs

Usage

#include "stdlib/math/base/special/dirichlet_eta.h"

stdlib_base_eta( s )

Evaluates the Dirichlet eta function for a double-precision floating-point number s.

double y = stdlib_base_eta( 0.0 );
// returns 0.5

The function accepts the following arguments:

  • s: [in] double input value.
double stdlib_base_eta( const double s );

Examples

#include "stdlib/math/base/special/dirichlet_eta.h"
#include <stdio.h>

int main( void ) {
    const double x[] = { 45.0, 90.0, 0.0, 0.0 / 0.0 };

    double y;
    int i;
    for ( i = 0; i < 4; i++ ) {
        y = stdlib_base_eta( x[ i ] );
        printf( "η(%lf) = %lf\n", x[ i ], y );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright © 2016-2026. The Stdlib Authors.