Package Exports
- @stdlib/stats-base-dists-invgamma-quantile
- @stdlib/stats-base-dists-invgamma-quantile/dist
- @stdlib/stats-base-dists-invgamma-quantile/dist/index.js
- @stdlib/stats-base-dists-invgamma-quantile/lib/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-invgamma-quantile) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Quantile Function
Inverse gamma distribution quantile function.
The quantile function for an inverse gamma random variable is
for 0 <= p < 1, where alpha > 0 is the shape parameter and beta > 0 is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-invgamma-quantileUsage
var quantile = require( '@stdlib/stats-base-dists-invgamma-quantile' );quantile( p, alpha, beta )
Evaluates the quantile function for an inverse gamma distribution with parameters alpha (shape parameter) and beta (rate parameter).
var y = quantile( 0.8, 2.0, 1.0 );
// returns ~1.213
y = quantile( 0.5, 4.0, 2.0 );
// returns ~0.545If provided a probability p outside the interval [0,1], the function returns NaN.
var y = quantile( 1.9, 1.0, 1.0 );
// returns NaN
y = quantile( -0.1, 1.0, 1.0 );
// returns NaNIf provided NaN as any argument, the function returns NaN.
var y = quantile( NaN, 1.0, 1.0 );
// returns NaN
y = quantile( 0.0, NaN, 1.0 );
// returns NaN
y = quantile( 0.0, 1.0, NaN );
// returns NaNIf provided alpha <= 0, the function returns NaN.
var y = quantile( 0.4, -1.0, 1.0 );
// returns NaNIf provided beta <= 0, the function returns NaN.
var y = quantile( 0.4, 1.0, -1.0 );
// returns NaNquantile.factory( alpha, beta )
Returns a function for evaluating the quantile function of an inverse gamma distribution with parameters alpha (shape parameter) and beta (rate parameter).
var myquantile = quantile.factory( 2.0, 2.0 );
var y = myquantile( 0.8 );
// returns ~2.426
y = myquantile( 0.4 );
// returns ~0.989Examples
var randu = require( '@stdlib/random-base-randu' );
var quantile = require( '@stdlib/stats-base-dists-invgamma-quantile' );
var alpha;
var beta;
var p;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
p = randu();
alpha = randu() * 5.0;
beta = randu() * 5.0;
y = quantile( p, alpha, beta );
console.log( 'p: %d, α: %d, β: %d, Q(p;α,β): %d', p.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.