Package Exports
- @turf/distance-weight
 - @turf/distance-weight/package.json
 
Readme
@turf/distance-weight
pNormDistance
calcualte the Minkowski p-norm distance between two features.
Parameters
feature1Feature<Point> point featurefeature2Feature<Point> point featurepp-norm 1=<p<=infinity 1: Manhattan distance 2: Euclidean distance (optional, default2)
Returns number
distanceWeight
Parameters
fcFeatureCollection<any> FeatureCollection.optionsObject? option object.options.thresholdnumber If the distance between neighbor and target features is greater than threshold, the weight of that neighbor is 0. (optional, default10000)options.pnumber Minkowski p-norm distance parameter. 1: Manhattan distance. 2: Euclidean distance. 1=<p<=infinity. (optional, default2)options.binaryboolean If true, weight=1 if d <= threshold otherwise weight=0. If false, weight=Math.pow(d, alpha). (optional, defaultfalse)options.alphanumber distance decay parameter. A big value means the weight decay quickly as distance increases. (optional, default-1)options.standardizationboolean row standardization. (optional, defaultfalse)
Examples
var bbox = [-65, 40, -63, 42];
var dataset = turf.randomPoint(100, { bbox: bbox });
var result = turf.distanceWeight(dataset);Returns Array<Array<number>> distance weight matrix.
This module is part of the Turfjs project, an open source module collection dedicated to geographic algorithms. It is maintained in the Turfjs/turf repository, where you can create PRs and issues.
Installation
Install this single module individually:
$ npm install @turf/distance-weightOr install the all-encompassing @turf/turf module that includes all modules as functions:
$ npm install @turf/turf