Package Exports
- auraclassify
- auraclassify/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (auraclassify) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
AuraClassify
AuraClassify is a powerful content moderation and classification system built on TensorFlow.js, utilizing the Universal Sentence Encoder for text analysis.
Features
- Content moderation and classification
- Multi-category support with subcategories
- Confidence scoring and sentiment analysis
- Detailed analysis reports
- Easy to train and use
- Supports both browser and Node.js environments
Installation
npm install auraclassify
Quick Start
const AuraClassify = require('auraclassify');
// Initialize classifier
const classifier = new AuraClassify({
backend: "tfjs" // or "tfjs-node" for Node.js backend
});
// Train the model
await classifier.train({
dataset: trainingData,
log: true,
batchSize: 4
});
// Classify text
const result = await classifier.classify("Text to analyze");
Training Data Format
Training data should be an array of objects with input
and output
properties:
const trainingData = [
{
input: "Example text content",
output: "category" // or "category/subcategory"
}
];
Supported Categories
safe
: Safe contentsexual
: Adult contentharassment
: Harassment contenthate
: Hate speechillicit
: Illegal contentself-harm
: Self-harm contentviolence
: Violent content
Each category can have subcategories (e.g., "violence/threatening", "self-harm/instructions")
API Reference
Constructor
const classifier = new AuraClassify({ backend = "tfjs" });
Methods
train(options)
await classifier.train({
dataset: trainingData,
log: true,
batchSize: 4
});
classify(text)
const result = await classifier.classify("Text to analyze");
save(path)
await classifier.save("path/to/model.json");
load(path)
await classifier.load("path/to/model.json");
How It Works
AuraClassify uses the Universal Sentence Encoder to convert text into high-dimensional vectors (embeddings). These embeddings capture semantic meaning, allowing the system to understand context and nuance in text.
The classification process involves:
- Text embedding generation
- Similarity comparison with trained examples
- Category and subcategory detection
- Confidence scoring
- Detailed analysis generation
Example Output
{
analysis: {
input: {
text: "Original text",
length: 12,
wordCount: 2
},
result: {
label: "category/subcategory",
confidence: 0.85,
confidenceLevel: "HIGH"
},
// ... additional analysis data
},
summary: {
decision: "CATEGORY (HIGH confidence level)",
confidence: 0.85,
status: "RELIABLE"
}
}
License
Apache License 2.0
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Support
For issues and feature requests, please use the GitHub issues page.