What BriefThis is a standalone AVL Tree data structure from the data-structure-typed collection. If you wish to access more data
structures or advanced features, you can transition to directly installing the
complete data-structure-typed package
How install npmnpm i avl-tree-typed --save yarn snippet TSimport { AVLTree, AVLTreeNode} from 'data-structure-typed' ;
const avlTree = new AVLTree< AVLTreeNode< number >> ( ) ;
const idsOrVals = [ 11 , 3 , 15 , 1 , 8 , 13 , 16 , 2 , 6 , 9 , 12 , 14 , 4 , 7 , 10 , 5 ] ;
avlTree. addMany ( idsOrVals, idsOrVals) ;
const node6 = avlTree. get ( 6 ) ;
node6 && avlTree. getHeight ( node6)
node6 && avlTree. getDepth ( node6)
const getNodeById = avlTree. get ( 10 , 'id' ) ;
getNodeById?. id
const getMinNodeByRoot = avlTree. getLeftMost ( ) ;
getMinNodeByRoot?. id
const node15 = avlTree. get ( 15 ) ;
const getMinNodeBySpecificNode = node15 && avlTree. getLeftMost ( node15) ;
getMinNodeBySpecificNode?. id
const subTreeSum = node15 && avlTree. subTreeSum ( node15) ;
subTreeSum
const lesserSum = avlTree. lesserSum ( 10 ) ;
lesserSum
const node11 = avlTree. get ( 11 ) ;
node11?. id
const dfs = avlTree. DFS ( 'in' , 'node' ) ;
dfs[ 0 ] . id
avlTree. perfectlyBalance ( ) ;
const bfs = avlTree. BFS ( 'node' ) ;
avlTree. isPerfectlyBalanced ( ) && bfs[ 0 ] . id
avlTree. remove ( 11 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
node15 && avlTree. getHeight ( node15)
avlTree. remove ( 1 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 4 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 10 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 15 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 5 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 13 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 3 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 8 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 6 , true ) [ 0 ] . deleted?. id
avlTree. remove ( 6 , true ) . length
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 7 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 9 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 14 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. isAVLBalanced ( ) ;
const lastBFSIds = avlTree. BFS ( ) ;
lastBFSIds[ 0 ]
const lastBFSNodes = avlTree. BFS ( 'node' ) ;
lastBFSNodes[ 0 ] . id JSconst { AVLTree} = require ( 'data-structure-typed' ) ;
const avlTree = new AVLTree ( ) ;
const idsOrVals = [ 11 , 3 , 15 , 1 , 8 , 13 , 16 , 2 , 6 , 9 , 12 , 14 , 4 , 7 , 10 , 5 ] ;
avlTree. addMany ( idsOrVals, idsOrVals) ;
const node6 = avlTree. get ( 6 ) ;
node6 && avlTree. getHeight ( node6)
node6 && avlTree. getDepth ( node6)
const getNodeById = avlTree. get ( 10 , 'id' ) ;
getNodeById?. id
const getMinNodeByRoot = avlTree. getLeftMost ( ) ;
getMinNodeByRoot?. id
const node15 = avlTree. get ( 15 ) ;
const getMinNodeBySpecificNode = node15 && avlTree. getLeftMost ( node15) ;
getMinNodeBySpecificNode?. id
const subTreeSum = node15 && avlTree. subTreeSum ( node15) ;
subTreeSum
const lesserSum = avlTree. lesserSum ( 10 ) ;
lesserSum
const node11 = avlTree. get ( 11 ) ;
node11?. id
const dfs = avlTree. DFS ( 'in' , 'node' ) ;
dfs[ 0 ] . id
avlTree. perfectlyBalance ( ) ;
const bfs = avlTree. BFS ( 'node' ) ;
avlTree. isPerfectlyBalanced ( ) && bfs[ 0 ] . id
avlTree. remove ( 11 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
node15 && avlTree. getHeight ( node15)
avlTree. remove ( 1 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 4 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 10 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 15 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 5 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 13 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 3 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 8 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 6 , true ) [ 0 ] . deleted?. id
avlTree. remove ( 6 , true ) . length
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 7 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 9 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. remove ( 14 , true ) [ 0 ] . deleted?. id
avlTree. isAVLBalanced ( ) ;
avlTree. getHeight ( )
avlTree. isAVLBalanced ( ) ;
const lastBFSIds = avlTree. BFS ( ) ;
lastBFSIds[ 0 ]
const lastBFSNodes = avlTree. BFS ( 'node' ) ;
lastBFSNodes[ 0 ] . id Find elements in a range type Datum = { timestamp: Date; temperature: number } ;
const cpuData: Datum[ ] = [
{ timestamp: new Date ( '2024-12-02T00:00:00' ) , temperature: 55.1 } ,
{ timestamp: new Date ( '2024-12-02T00:01:00' ) , temperature: 56.3 } ,
{ timestamp: new Date ( '2024-12-02T00:02:00' ) , temperature: 54.8 } ,
{ timestamp: new Date ( '2024-12-02T00:03:00' ) , temperature: 57.2 } ,
{ timestamp: new Date ( '2024-12-02T00:04:00' ) , temperature: 58.0 } ,
{ timestamp: new Date ( '2024-12-02T00:05:00' ) , temperature: 59.4 } ,
{ timestamp: new Date ( '2024-12-02T00:06:00' ) , temperature: 60.1 } ,
{ timestamp: new Date ( '2024-12-02T00:07:00' ) , temperature: 61.3 } ,
{ timestamp: new Date ( '2024-12-02T00:08:00' ) , temperature: 62.0 } ,
{ timestamp: new Date ( '2024-12-02T00:09:00' ) , temperature: 63.5 } ,
{ timestamp: new Date ( '2024-12-02T00:10:00' ) , temperature: 64.0 } ,
{ timestamp: new Date ( '2024-12-02T00:11:00' ) , temperature: 62.8 } ,
{ timestamp: new Date ( '2024-12-02T00:12:00' ) , temperature: 61.5 } ,
{ timestamp: new Date ( '2024-12-02T00:13:00' ) , temperature: 60.2 } ,
{ timestamp: new Date ( '2024-12-02T00:14:00' ) , temperature: 59.8 } ,
{ timestamp: new Date ( '2024-12-02T00:15:00' ) , temperature: 58.6 } ,
{ timestamp: new Date ( '2024-12-02T00:16:00' ) , temperature: 57.4 } ,
{ timestamp: new Date ( '2024-12-02T00:17:00' ) , temperature: 56.2 } ,
{ timestamp: new Date ( '2024-12-02T00:18:00' ) , temperature: 55.7 } ,
{ timestamp: new Date ( '2024-12-02T00:19:00' ) , temperature: 54.5 } ,
{ timestamp: new Date ( '2024-12-02T00:20:00' ) , temperature: 53.2 } ,
{ timestamp: new Date ( '2024-12-02T00:21:00' ) , temperature: 52.8 } ,
{ timestamp: new Date ( '2024-12-02T00:22:00' ) , temperature: 51.9 } ,
{ timestamp: new Date ( '2024-12-02T00:23:00' ) , temperature: 50.5 } ,
{ timestamp: new Date ( '2024-12-02T00:24:00' ) , temperature: 49.8 } ,
{ timestamp: new Date ( '2024-12-02T00:25:00' ) , temperature: 48.7 } ,
{ timestamp: new Date ( '2024-12-02T00:26:00' ) , temperature: 47.5 } ,
{ timestamp: new Date ( '2024-12-02T00:27:00' ) , temperature: 46.3 } ,
{ timestamp: new Date ( '2024-12-02T00:28:00' ) , temperature: 45.9 } ,
{ timestamp: new Date ( '2024-12-02T00:29:00' ) , temperature: 45.0 }
] ;
const cpuTemperatureTree = new AVLTree< Date, number , Datum> ( cpuData, {
toEntryFn : ( { timestamp, temperature } ) => [ timestamp, temperature]
} ) ;
const rangeStart = new Date ( '2024-12-02T00:05:00' ) ;
const rangeEnd = new Date ( '2024-12-02T00:15:00' ) ;
const rangeResults = cpuTemperatureTree. rangeSearch ( [ rangeStart, rangeEnd] , node => ( {
minute: node ? node. key. getMinutes ( ) : 0 ,
temperature: cpuTemperatureTree. get ( node ? node. key : undefined )
} ) ) ;
console . log ( rangeResults) ;
API docs & ExamplesAPI Docs
Live Examples
Examples Repository
Data Structures
Data Structure
Unit Test
Performance Test
API Docs
AVL Tree
AVLTree
Standard library data structure comparison
Data Structure Typed
C++ STL
java.util
Python collections
AVLTree<K, V>
-
-
-
Benchmark
avl-tree
test name time taken (ms) executions per sec sample deviation 10,000 add randomly 31.32 31.93 3.67e-4 10,000 add & delete randomly 70.90 14.10 0.00 10,000 addMany 40.58 24.64 4.87e-4 10,000 get 27.31 36.62 2.00e-4
Built-in classic algorithms
Algorithm
Function Description
Iteration Type
Binary Tree DFS
Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree,
and then the right subtree, using recursion.
Recursion + Iteration
Binary Tree BFS
Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level
from left to right.
Iteration
Binary Tree Morris
Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree
traversal without additional stack or recursion.
Iteration
Software Engineering Design Standards
Principle
Description
Practicality
Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
Extensibility
Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
Modularization
Includes data structure modularization and independent NPM packages.
Efficiency
All methods provide time and space complexity, comparable to native JS performance.
Maintainability
Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
Testability
Automated and customized unit testing, performance testing, and integration testing.
Portability
Plans for porting to Java, Python, and C++, currently achieved to 80%.
Reusability
Fully decoupled, minimized side effects, and adheres to OOP.
Security
Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
Scalability
Data structure software does not involve load issues.