JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 18
  • Score
    100M100P100Q70351F
  • License MIT

A frontend cryptographic library for encrypting and decrypting data in the browser

Package Exports

  • bvault-js
  • bvault-js/dist/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bvault-js) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

bVault-js - Secure Frontend Encryption Library

npm version wakatime NPM Type Definitions GitHub commit activity npm bundle size npm bundle size GitHub License

bVault-js is a type-safe, lightweight, zero-dependency cryptographic library for secure encryption and decryption in browser environments. It implements AES-GCM encryption with PBKDF2 key derivation, providing a simple API for data protection.

Features

  • 🔒 AES-GCM 256-bit encryption
  • 🔑 Password-based key derivation (PBKDF2 with 100,000 iterations)
  • 🧂 Automatic salt and IV generation
  • 🛡️ Built-in error handling for cryptographic operations
  • 💻 Works in browsers (using Web Crypto API)

Installation

npm install bvault-js

Usage

Basic Encryption & Decryption

import { encrypt, decrypt } from 'bvault-js';

const password = 'supersecretpassword';
const sensitiveData = 'My confidential information';

// Encrypt data
const { encryptedData, iv, salt } = await encrypt(sensitiveData, password);
console.log('Encrypted:', encryptedData);
console.log('IV:', iv);
console.log('Salt:', salt);

// Decrypt data
const decrypted = await decrypt(encryptedData, password, iv, salt);
console.log('Decrypted:', decrypted); // 'My confidential information'

File Encryption

import { encrypt, decrypt } from 'bvault-js';

async function encryptFile(file, password) {
  const reader = new FileReader();

  return new Promise((resolve, reject) => {
    reader.onload = async () => {
      try {
        const encrypted = await encrypt(reader.result, password);
        resolve(encrypted);
      } catch (error) {
        reject(error);
      }
    };
    reader.readAsText(file);
  });
}

// Usage
const fileInput = document.querySelector('input[type="file"]');
fileInput.addEventListener('change', async (event) => {
  const file = event.target.files[0];
  const encryptedFile = await encryptFile(file, 'mypassword');

  // Save encryptedFile components to storage
  localStorage.setItem('encryptedFile', encryptedFile.encryptedData);
  localStorage.setItem('iv', encryptedFile.iv);
  localStorage.setItem('salt', encryptedFile.salt);
});

Secure Configuration Storage

import { encrypt, decrypt } from 'bvault-js';

// Store configuration securely
async function saveConfig(config, password) {
  const encrypted = await encrypt(JSON.stringify(config), password);
  return {
    config: encrypted.encryptedData,
    iv: encrypted.iv,
    salt: encrypted.salt,
  };
}

// Retrieve configuration
async function loadConfig(storedConfig, password) {
  try {
    const decrypted = await decrypt(
      storedConfig.config,
      password,
      storedConfig.iv,
      storedConfig.salt,
    );
    return JSON.parse(decrypted);
  } catch (error) {
    console.error('Failed to decrypt configuration:', error);
    return null;
  }
}

// Usage example
const appConfig = { apiKey: '12345', userPrefs: { darkMode: true } };
const password = 'configPassword';

// Save configuration
const encryptedConfig = await saveConfig(appConfig, password);

// Later... load configuration
const loadedConfig = await loadConfig(encryptedConfig, password);

API Reference

encrypt(data: string, password: string)

Encrypts data using a password

Parameters:

  • data: String to encrypt
  • password: Encryption password

Returns: Promise resolving to:

{
  encryptedData: string, // Base64-encoded ciphertext
  iv: string,            // Base64-encoded initialization vector
  salt: string           // Base64-encoded salt
}

decrypt(encryptedData: string, password: string, iv: string, salt: string)

Decrypts data using the original password and stored parameters

Parameters:

  • encryptedData: Base64-encoded ciphertext
  • password: Original encryption password
  • iv: Base64-encoded initialization vector
  • salt: Base64-encoded salt

Returns: Promise resolving to the decrypted string

generateSalt()

Generates a cryptographically secure salt

Returns: ArrayBuffer containing salt

deriveKey(password: string, salt: ArrayBuffer | Uint8Array, usages: KeyUsage[])

Derives a cryptographic key from a password

Parameters:

  • password: Password to derive key from
  • salt: Salt value
  • usages: Array of key usages (e.g., ['encrypt'], ['decrypt'])

Returns: Promise resolving to CryptoKey

Error Handling

The library throws specific error types for cryptographic operations:

  • EncryptionError: Failed to encrypt data
  • DecryptionError: Failed to decrypt data (invalid password or corrupted data)
try {
  const decrypted = await decrypt(encryptedData, password, iv, salt);
} catch (error) {
  if (error instanceof DecryptionError) {
    console.error('Decryption failed - check your password');
  } else {
    console.error('Unexpected error:', error);
  }
}

Security Notes

  1. Password Strength: Always use strong, unique passwords for encryption
  2. Secure Storage: Safely store IVs and salts with encrypted data
  3. Never Hardcode: Never embed passwords in source code
  4. Key Management: Consider rotating encryption keys periodically
  5. Transport Security: Use HTTPS when transmitting encrypted data

Limitations

While bVault-js provides robust encryption capabilities, it has some intentional limitations in its current version:

1. Password-Based Key Constraints

  • No Key Rotation: Changing passwords requires re-encrypting all data
  • No Key Export: Derived keys cannot be exported/backed up independently

2. Performance Considerations

  • Fixed Iterations: PBKDF2 fixed at 100,000 iterations (secure but computationally expensive)
  • Large Data: Not optimized for encrypting files >1GB due to memory constraints

3. Algorithm Constraints

  • Fixed Algorithms: Only supports AES-GCM with 256-bit keys
  • No Algorithm Agility: Cannot switch to other encryption algorithms

4. Input Type Constraints

  • String-Only Input: Only encrypts/decrypts UTF-8 strings (not binary data)
  • No Stream Support: Requires complete data in memory

5. Operational Constraints

  • No Key Stretching: Requires full PBKDF2 derivation on each operation
  • No Session Caching: Keys aren't cached between operations

6. Environmental Constraints

  • Web Crypto Dependency: Requires modern browsers or Node.js v15+
  • No Fallback: No alternative implementations for non-Web Crypto environments

7. Security Model Constraints

  • No Authentication: Doesn't verify data integrity before decryption
  • No Key Separation: Same derivation parameters for encryption/decryption

Roadmap & Future Improvements

We're actively working to enhance bVault-js with these planned features:

  • Binary Data Support: Encrypt/decrypt ArrayBuffer and Blob types
  • Configurable Algorithms: Allow choosing between AES-GCM and ChaCha20-Poly1305
  • Key Management: Add key rotation and export capabilities
  • Stream Processing: Support for large file encryption through stream processing
  • Web Worker Support: Offload crypto operations to background threads
  • Enhanced Security:
    • Add authenticated data support (AAD) for AES-GCM
    • Implement configurable iteration counts
    • Add key derivation memory hardening (Argon2 support)
  • Extended Environments:
    • React Native compatibility
    • Service worker support
  • Developer Experience:
    • Additional error diagnostics
    • Password strength meter integration
    • TypeScript type enhancements

When to Consider Alternatives

Consider other solutions if you need:

  • Binary data encryption/decryption today
  • Encryption of files larger than 1GB
  • Algorithm agility (e.g., ChaCha20-Poly1305 support)
  • Hardware Security Module (HSM) integration
  • Post-quantum cryptography algorithms

Contribution

Contributions are welcome! Please read the Contribution Guidelines before submitting pull requests. We especially welcome help with items from our roadmap.

License

MIT © Aaron Will Djaba