JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 4
  • Score
    100M100P100Q40174F
  • License MIT

Intelligent data cleaning CLI with natural language support - Docker-powered Python engine

Package Exports

  • cleanifix
  • cleanifix/cli/dist/index-docker.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (cleanifix) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Cleanifix

A CLI tool that automatically cleans your data files through natural language commands. Like having a data analyst in your terminal.

๐Ÿš€ Quick Start bash# Install npm install -g cleanifix

Basic usage

cleanifix @sales.csv "remove duplicates" cleanifix @users.csv "fill missing emails with 'unknown@example.com'" cleanifix @data.json "standardize all dates to ISO format"

Interactive mode

cleanifix interactive @messy_data.csv ๐ŸŽฏ Features Core Capabilities (MVP)

Missing Value Detection & Handling - Find and fix missing data automatically Data Standardization - Normalize dates, phone numbers, addresses, and more Deduplication - Remove duplicate rows with smart matching

Natural Language Interface bash# Just describe what you want cleanifix @customers.csv "find missing phone numbers and fill with 'N/A'" cleanifix @inventory.csv "standardize product names to title case" cleanifix @transactions.csv "remove duplicate entries keeping the most recent" Smart Suggestions bash$ cleanifix @data.csv "analyze"

๐Ÿ“Š Data Quality Report: โœ— 156 missing values in 'email' column โœ— 89 inconsistent date formats โœ— 34 potential duplicates

Suggested fixes:

  1. Fill missing emails with domain-based patterns
  2. Standardize dates to YYYY-MM-DD
  3. Remove exact duplicates keeping first occurrence

Apply all fixes? [Y/n] ๐Ÿ“ฆ Installation Prerequisites

Node.js 18+ Python 3.8+ 4GB RAM recommended for large files

Install from npm bashnpm install -g cleanifix Install from source bashgit clone https://github.com/rickyjs1955/cleanifix.git cd cleanifix ./scripts/setup-dev.sh ๐Ÿ› ๏ธ Usage Examples Basic Cleaning bash# Find issues cleanifix @data.csv "show me data quality issues"

Fix missing values

cleanifix @sales.csv "fill missing prices with median"

Standardize formats

cleanifix @contacts.csv "standardize all phone numbers to international format"

Remove duplicates

cleanifix @emails.csv "remove duplicate emails keeping the latest entry" Batch Processing bash# Create a config file cat > cleaning-rules.yaml << EOF rules:

  • type: missing_values columns: [price, quantity] strategy: median
  • type: standardize column: phone format: E164
  • type: deduplicate keys: [email] keep: last EOF

Run batch cleaning

cleanifix batch @data.csv --rules cleaning-rules.yaml Interactive Mode bashcleanifix interactive @messy_data.csv

๐Ÿงน Cleanifix Interactive Mode

analyze my data fill missing ages with average by city
standardize all names to proper case save as cleaned_data.csv exit ๐Ÿ—๏ธ Architecture Cleanifix uses a hybrid architecture:

CLI Interface (Node.js) - Fast, responsive user interaction Processing Engine (Python) - Powerful data manipulation with pandas Communication - JSON-based message passing between components

๐Ÿค Contributing We welcome contributions! See CONTRIBUTING.md for guidelines. Development Setup bash# Clone the repo git clone https://github.com/rickyjs1955/cleanifix.git cd cleanifix

Setup development environment

./scripts/setup-dev.sh

Run tests

npm test # CLI tests python -m pytest # Engine tests

Run in development mode

npm run dev ๐Ÿ“‹ Roadmap Phase 1 (Current) - MVP

Basic CLI interface Missing value handling Simple standardization Exact deduplication CSV support JSON support

Phase 2 - Enhanced Rules

Fuzzy deduplication Custom regex patterns Outlier detection Data type inference Excel support

Phase 3 - ML Integration

Smart imputation Anomaly detection Pattern learning Confidence scoring Auto-cleaning mode

๐Ÿ“„ License MIT License - see LICENSE file for details ๐Ÿ™ Acknowledgments Built with:

Commander.js - CLI framework Pandas - Data manipulation Chalk - Terminal styling

๐Ÿ’ฌ Support

Documentation: docs.cleanifix.dev Issues: GitHub Issues Discussions: GitHub Discussions

Made with โค๏ธ by data people, for data people