JSPM

datamagic-ml

1.0.0
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 71
  • Score
    100M100P100Q74377F
  • License MIT

A lightweight JavaScript library for essential feature engineering tasks in machine learning. Provides utilities for normalization, standardization, one-hot encoding and missing value handling. Designed for simplicity and performance in both Node.js and browser environments.

Package Exports

  • datamagic-ml
  • datamagic-ml/src/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (datamagic-ml) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

DataMagic-ML

A lightweight JavaScript library for essential feature engineering tasks. Provides utilities for normalization, standardization, one-hot encoding, and missing value handling. Designed for simplicity and performance in both Node.js and browser environments.

Features

  • Min-Max Scaling: Normalize data to a specific range.
  • Standardization: Transform data to have zero mean and unit variance.
  • One-Hot Encoding: Convert categorical data into numerical format.
  • Missing Value Handling: Replace missing values with mean, median, or a constant.

Installation

You can install datamagic-ml via npm:

npm install datamagic-ml

Or using yarn:

yarn add datamagic-ml

Usage

Importing the Library:

const { MinMaxScaler, StandardScaler, OneHotEncoder, CleanMissings } = require('datamagic-ml');

Min-Max Scaling

const scaler = new MinMaxScaler();
const data = [1, 2, 3, 4, 5];
scaler.fit(data);
console.log(scaler.transform(data));

Standardization

const stdScaler = new StandardScaler();
const data = [1, 2, 3, 4, 5];
stdScaler.fit(data);
console.log(stdScaler.transform(data));

One-Hot Encoding

const encoder = new OneHotEncoder();
encoder.fit(['red', 'green', 'blue']);
console.log(encoder.transform(['green', 'red', 'yellow', 'blue'])); 

Handling Missing Values

const testArray = [1, null, 3, 4, NaN, 6];
console.log(CleanMissings(testArray, 'mean'));
console.log(CleanMissings(testArray, 'median'));
console.log(CleanMissings(testArray, 'constant', 0));

License

Licensed under the MIT License.