Package Exports
- dataship-frame
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (dataship-frame) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
frame
a DataFrame for Javascript.
crunch numbers in Node or the Browser
features
- Interactive performance (<100ms) on millions of rows
- Syntax similar to SQL and Pandas
- Compatible with
PapaParse
andBabyParse
examples
Parse the Iris
dataset (with BabyParse
) and create a Frame
from the result.
var baby = require('babyparse'),
Frame = require('frame');
// parse the csv file
config = {"header" :true, "dynamicTyping" : true, "skipEmptyLines" : true};
iris = baby.parseFiles('iris.csv', config).data;
// create a frame from the parsed results
frame = new Frame(iris);
groupby
Group on Species
and find the average value (mean
) for Sepal.Length
.
g = frame.groupby("Species");
g.mean("Sepal.Length");
{ "virginica": 6.58799, "versicolor": 5.9360, "setosa": 5.006 }
Using the same grouping, find the average value for Sepal.Width
.
g.mean("Sepal.Width");
{ "virginica": 2.97399, "versicolor": 2.770, "setosa": 3.4279 }
where
Filter by Species
value virginica
then find the average.
f = frame.where("Species", "virginica");
f.mean("Sepal.Length");
6.58799
Get the number of rows that match the filter.
f.count();
50
Columns can also be accessed directly (with the filter applied).
f["Species"]
["virginica", "virginica", "virginica", ..., "virginica"]
tests
Hundreds of tests verify correctness on millions of data points (against a Pandas reference).
npm run data && npm run test
benchmarks
npm run bench
typical performance on one million rows
operation | time |
---|---|
groupby |
54ms |
where |
29ms |
sum |
5ms |
design goals and inspiration
- compatibility with feather
interface
- pandas
- R
- Linq
- rethinkDB
- Matlab