JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 405
  • Score
    100M100P100Q93049F
  • License MIT

A Data Frame for Javascript. Crunch numbers in node and the browser.

Package Exports

  • dataship-frame

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (dataship-frame) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

frame

a DataFrame for Javascript.

crunch numbers in Node or the Browser

features

  • Interactive performance (<100ms) on millions of rows
  • Syntax similar to SQL and Pandas
  • Compatible with PapaParse and BabyParse

examples

Parse the Iris dataset (with BabyParse) and create a Frame from the result.

var baby = require('babyparse'),
    Frame = require('frame');

// parse the csv file
config = {"header" :true, "dynamicTyping" : true, "skipEmptyLines" : true};
iris = baby.parseFiles('iris.csv', config).data;

// create a frame from the parsed results
frame = new Frame(iris);

groupby

Group on Species and find the average value (mean) for Sepal.Length.

g = frame.groupby("Species");
g.mean("Sepal.Length");
{ "virginica": 6.58799, "versicolor": 5.9360, "setosa": 5.006 }

Using the same grouping, find the average value for Sepal.Width.

g.mean("Sepal.Width");
{ "virginica": 2.97399, "versicolor": 2.770, "setosa": 3.4279 }

where

Filter by Species value virginica then find the average.

f = frame.where("Species", "virginica");
f.mean("Sepal.Length");
6.58799

Get the number of rows that match the filter.

f.count();
50

Columns can also be accessed directly (with the filter applied).

f["Species"]
["virginica", "virginica", "virginica", ..., "virginica"]

tests

Hundreds of tests verify correctness on millions of data points (against a Pandas reference).

npm run data && npm run test

benchmarks

npm run bench

typical performance on one million rows

operation time
groupby 54ms
where 29ms
sum 5ms

design goals and inspiration

interface

  • pandas
  • R
  • Linq
  • rethinkDB
  • Matlab

performance