Package Exports
- distributions-geometric-mean
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (distributions-geometric-mean) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Mean
Geometric distribution expected value.
The expected value for a geometric random variable is
where 0 <= p <= 1 is the success probability. The random variable X denotes the number of failures until the first success in a sequence of independent Bernoulli trials.
Installation
$ npm install distributions-geometric-meanFor use in the browser, use browserify.
Usage
var mean = require( 'distributions-geometric-mean' );mean( p[, opts] )
Computes the expected value for a geometric distribution with parameter p . p may be either a number, an array, a typed array, or a matrix.
var matrix = require( 'dstructs-matrix' ),
p,
mat,
out,
i;
out = mean( 0.2 );
// returns 4
p = [ 0.2, 0.4, 0.8, 1 ];
out = mean( p );
// returns [ 4, 1.5, 0.25, 0 ]
p = new Float32Array( p );
out = mean( p );
// returns Float64Array( [4,1.5,0.25,0] )
p = matrix( [ 0.2, 0.4, 0.8, 1 ], [2,2] );
/*
[ 0.2 0.4
0.8 1 ]
*/
out = mean( p );
/*
[ 4 1.5
0.25 0 ]
*/
The function accepts the following options:
__accessor__: accessor `function` for accessing `array` values.__dtype__: output [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix) data type. Default: `float64`.- copy:
booleanindicating if thefunctionshould return a new data structure. Default:true. - path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default:
'.'.
For non-numeric arrays, provide an accessor function for accessing array values.
var p = [
[0,0.2],
[1,0.4],
[2,0.8],
[3,1]
];
function getValue( d, i ) {
return d[ 1 ];
}
var out = mean( p, {
'accessor': getValue
});
// returns [ 4, 1.5, 0.25, 0 ]
To deepset an object array, provide a key path and, optionally, a key path separator.
var p = [
{'x':[9,0.2]},
{'x':[9,0.4]},
{'x':[9,0.8]},
{'x':[9,1]}
];
var out = mean( p, {
'path': 'x|1',
'sep': '|'
});
/*
[ { x: [ 9, 4 ] },
{ x: [ 9, 1.5 ] },
{ x: [ 9, 0.25 ] },
{ x: [ 9, 0 ] } ]
*/
var bool = ( p === out );
// returns trueBy default, when provided a typed array or matrix, the output data structure is float64 in order to preserve precision. To specify a different data type, set the dtype option (see matrix for a list of acceptable data types).
var p, out;
p = new Float64Array( [ 0.2,0.4,0.8,1 ] );
out = mean( p, {
'dtype': 'int32'
});
// returns Int32Array( [4,1,0,0] )
// Works for plain arrays, as well...
out = mean( [0.2,0.4,0.8,1], {
'dtype': 'int32'
});
// returns Int32Array( [4,1,0,0] )
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy option to false.
var p,
bool,
mat,
out,
i;
p = [ 0.2, 0.4, 0.8, 1 ];
out = mean( p, {
'copy': false
});
// returns [ 4, 1.5, 0.25, 0 ]
bool = ( p === out );
// returns true
mat = matrix( [ 0.2, 0.4, 0.8, 1 ], [2,2] );
/*
[ 0.2 0.4
0.8 1 ]
*/
out = mean( mat, {
'copy': false
});
/*
[ 4 1.5
0.25 0 ]
*/
bool = ( mat === out );
// returns trueNotes
If an element is not a number in the interval [0,1], the expected value is
NaN.var p, out; out = mean( -1 ); // returns NaN out = mean( 2 ); // returns NaN out = mean( null ); // returns NaN out = mean( true ); // returns NaN out = mean( {'a':'b'} ); // returns NaN out = mean( [ true, null, [] ] ); // returns [ NaN, NaN, NaN ] function getValue( d, i ) { return d.x; } p = [ {'x':true}, {'x':[]}, {'x':{}}, {'x':null} ]; out = mean( p, { 'accessor': getValue }); // returns [ NaN, NaN, NaN, NaN ] out = mean( p, { 'path': 'x' }); /* [ {'x':NaN}, {'x':NaN}, {'x':NaN, {'x':NaN} ] */
Be careful when providing a data structure which contains non-numeric elements and specifying an
integeroutput data type, asNaNvalues are cast to0.var out = mean( [ true, null, [] ], { 'dtype': 'int8' }); // returns Int8Array( [0,0,0] );
Examples
var matrix = require( 'dstructs-matrix' ),
mean = require( 'distributions-geometric-mean' );
var p,
mat,
out,
tmp,
i;
// Plain arrays...
p = new Array( 10 );
for ( i = 0; i < p.length; i++ ) {
p[ i ] = i / 10;
}
out = mean( p );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < p.length; i++ ) {
p[ i ] = {
'x': p[ i ]
};
}
out = mean( p, {
'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < p.length; i++ ) {
p[ i ] = {
'x': [ i, p[ i ].x ]
};
}
out = mean( p, {
'path': 'x/1',
'sep': '/'
});
// Typed arrays...
p = new Int32Array( 10 );
for ( i = 0; i < p.length; i++ ) {
p[ i ] = i / 10;
}
out = mean( p );
// Matrices...
mat = matrix( p, [5,2], 'int32' );
out = mean( mat );
// Matrices (custom output data type)...
out = mean( mat, {
'dtype': 'uint8'
});To run the example code from the top-level application directory,
$ node ./examples/index.jsTests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make testAll new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-covIstanbul creates a ./reports/coverage directory. To access an HTML version of the report,
$ make view-covLicense
Copyright
Copyright © 2015. The Compute.io Authors.