Package Exports
- distributions-uniform-mgf
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (distributions-uniform-mgf) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Moment-Generating Function
uniform distribution moment-generating function (MGF).
The moment-generating function for a uniform random variable is
where a
is the minimum support and b
is the maximum support. The parameters must satisfy a < b
.
Installation
$ npm install distributions-uniform-mgf
For use in the browser, use browserify.
Usage
var mgf = require( 'distributions-uniform-mgf' );
mgf( t[, options] )
Evaluates the moment-generating function (PDF) for the uniform distribution. t
may be either a number
, an array
, a typed array
, or a matrix
.
var matrix = require( 'dstructs-matrix' ),
mat,
out,
t,
i;
out = mgf( 1 );
// returns ~1.718
out = mgf( -1 );
// returns ~0.632
t = [ 0, 0.5, 1, 1.5, 2, 2.5 ];
out = mgf( t );
// returns [ 1, ~1.297, ~1.718, ~2.321, ~3.195, ~4.473 ]
t = new Int8Array( t );
out = mgf( t );
// returns Float64Array( [1,1,~1.718,~1.718,~3.195,~3.195] )
t = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
t[ i ] = i * 0.5;
}
mat = matrix( t, [3,2], 'float32' );
/*
[ 0 0.5
1 1.5
2 2.5 ]
*/
out = mgf( mat );
/*
[ 1 ~1.297
~1.718 ~2.321
~3.195 ~4.473 ]
*/
The function accepts the following options
:
- a: minimum support. Default:
0
. - b: maximum support. Default:
1
. __accessor__: accessor `function` for accessing `array` values.
__dtype__: output [`typed array`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays) or [`matrix`](https://github.com/dstructs/matrix) data type. Default: `float64`.
- copy:
boolean
indicating if thefunction
should return a new data structure. Default:true
. - path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default:
'.'
.
A uniform distribution is a function of two parameters: a
(minimum support) and b
(maximum support). By default, a
is equal to 0
and b
is equal to 1
. To adjust either parameter, set the corresponding option.
var t = [ 0, 0.5, 1, 1.5, 2, 2.5 ];
var out = mgf( t, {
'a': 1,
'b': 2
});
// returns [ 1, ~2.139, ~4.671, ~10.403, ~23.605, ~54.492 ]
For non-numeric arrays
, provide an accessor function
for accessing array
values.
var data = [
[0,0],
[1,0.5],
[2,1],
[3,1.5],
[4,2],
[5,2.5]
];
function getValue( d, i ) {
return d[ 1 ];
}
var out = mgf( data, {
'accessor': getValue
});
// returns [ 1, ~1.297, ~1.718, ~2.321, ~3.195, ~4.473 ]
To deepset an object array
, provide a key path and, optionally, a key path separator.
var data = [
{'x':[0,0]},
{'x':[1,0.5]},
{'x':[2,1]},
{'x':[3,1.5]},
{'x':[4,2]},
{'x':[5,2.5]}
];
var out = mgf( data, {
'path': 'x/1',
'sep': '/'
});
/*
[
{'x':[0,1]},
{'x':[1,~1.297]},
{'x':[2,~1.718]},
{'x':[3,~2.321]},
{'x':[4,~3.195]},
{'x':[5,~4.473]}
]
*/
var bool = ( data === out );
// returns true
By default, when provided a typed array
or matrix
, the output data structure is float64
in order to preserve precision. To specify a different data type, set the dtype
option (see matrix
for a list of acceptable data types).
var t, out;
t = new Int8Array( [0,1,2,3,4] );
out = mgf( t, {
'dtype': 'int32'
});
// returns Int32Array( [1,1,3,6,13] )
// Works for plain arrays, as well...
out = mgf( [0,1,2,3,4], {
'dtype': 'uint8'
});
// returns Uint8Array( [1,1,3,6,13] )
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy
option to false
.
var bool,
mat,
out,
t,
i;
t = [ 0, 0.5, 1, 1.5, 2 ];
out = mgf( t, {
'copy': false
});
// returns [ 1, ~1.297, ~1.718, ~2.321, ~3.195, ~4.473 ]
bool = ( t === out );
// returns true
t = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
t[ i ] = i * 0.5;
}
mat = matrix( t, [3,2], 'float32' );
/*
[ 0 0.5
1 1.5
2 2.5 ]
*/
out = mgf( mat, {
'copy': false
});
/*
[ 1 ~1.297
~1.718 ~2.321
~3.195 ~4.473 ]
*/
bool = ( mat === out );
// returns true
Notes
If an element is not a numeric value, the evaluated MGF is
NaN
.var data, out; out = mgf( null ); // returns NaN out = mgf( true ); // returns NaN out = mgf( {'a':'b'} ); // returns NaN out = mgf( [ true, null, [] ] ); // returns [ NaN, NaN, NaN ] function getValue( d, i ) { return d.x; } data = [ {'x':true}, {'x':[]}, {'x':{}}, {'x':null} ]; out = mgf( data, { 'accessor': getValue }); // returns [ NaN, NaN, NaN, NaN ] out = mgf( data, { 'path': 'x' }); /* [ {'x':NaN}, {'x':NaN}, {'x':NaN, {'x':NaN} ] */
Be careful when providing a data structure which contains non-numeric elements and specifying an
integer
output data type, asNaN
values are cast to0
.var out = mgf( [ true, null, [] ], { 'dtype': 'int8' }); // returns Int8Array( [0,0,0] );
Examples
var mgf = require( 'distributions-uniform-mgf' ),
matrix = require( 'dstructs-matrix' );
var data,
mat,
out,
tmp,
i;
// Plain arrays...
data = new Array( 10 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i * 0.5;
}
out = mgf( data );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': data[ i ]
};
}
out = mgf( data, {
'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': [ i, data[ i ].x ]
};
}
out = mgf( data, {
'path': 'x/1',
'sep': '/'
});
// Typed arrays...
data = new Float32Array( 10 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i * 0.5;
}
out = mgf( data );
// Matrices...
mat = matrix( data, [5,2], 'float32' );
out = mgf( mat );
// Matrices (custom output data type)...
out = mgf( mat, {
'dtype': 'uint8'
});
To run the example code from the top-level application directory,
$ node ./examples/index.js
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
License
Copyright
Copyright © 2015. The Compute.io Authors.