JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 8
  • Score
    100M100P100Q77906F
  • License MIT

CLI tool for monitoring local LLM resource usage

Package Exports

  • envirollm
  • envirollm/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (envirollm) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

EnviroLLM CLI

A command-line tool for benchmarking energy consumption and performance of local LLMs across Ollama, LM Studio, vLLM, and other platforms.

Installation

Run with npx (no installation needed):

npx envirollm start

Or install globally:

npm install -g envirollm

Requirements

  • Node.js 14+
  • Python 3.7+
  • pip (Python package manager)

Quick Start

  1. Start the backend service:

    npx envirollm start
  2. Run benchmarks:

    # Ollama models
    npx envirollm benchmark --models llama3:8b,phi3:mini
    
    # LM Studio or other APIs
    npx envirollm benchmark-openai --url http://localhost:1234/v1 --model llama-3-8b
  3. View results:

    • CLI: Results displayed in terminal after benchmark completes
    • Web: envirollm.com/optimize for more detailed UI

Commands

# Service Management
npx envirollm start              # Start backend service (required for benchmarks)
npx envirollm start --port 8002  # Start on custom port
npx envirollm status             # Check if service is running

# Benchmarking - Ollama
npx envirollm benchmark --models llama3:8b,phi3:mini
npx envirollm benchmark --models llama3:8b --prompt "Write a sorting function"
npx envirollm benchmark --models llama3:8b,llama3:8b-q8  # Compare quantizations

# Benchmarking - LM Studio, vLLM, Custom APIs
npx envirollm benchmark-openai --url http://localhost:1234/v1 --model llama-3-8b
npx envirollm benchmark-openai --url http://localhost:8000/v1 --model meta-llama/Llama-2-7b-hf
npx envirollm benchmark-openai --url http://localhost:1234/v1 --model phi-3 --prompt "Custom prompt"
npx envirollm benchmark-openai --url http://localhost:1234/v1 --model llama-3-8b --api-key your-key

# Data Management
npx envirollm clean              # Remove all stored benchmark data

# Process Monitoring
npx envirollm detect             # List detected LLM processes
npx envirollm track --auto       # Auto-detect and track LLM processes
npx envirollm track -p python    # Track specific process by name

Benchmarking Details

Requirements:

  • Ollama: Install Ollama and run ollama serve
  • LM Studio/vLLM/Custom: API must be running on specified URL

Metrics Collected:

  • Energy consumption (Wh)
  • Tokens per second
  • CPU/GPU/memory usage
  • Quantization detection (Q4, Q8, FP16)
  • Power draw (W)
  • Response quality comparison

Data Storage: All benchmark results are stored locally at ~/.envirollm/benchmarks.db. Your data never leaves your machine.

Web Interface Alternative

You can also run benchmarks using the web interface at envirollm.com/optimize after starting the monitoring service with npx envirollm start. The web UI provides:

  • Visual model selection for Ollama, LM Studio, and custom APIs
  • CSV export functionality for benchmark data
  • Response comparison view to evaluate output quality
  • Custom prompt configuration
  • Same backend - results sync between CLI and web

Features

  • Real-time Monitoring: CPU, GPU, memory, and power consumption
  • Multi-Platform Benchmarking: Support for Ollama, LM Studio, vLLM, and OpenAI-compatible APIs
  • Optimization Recommendations: System-specific suggestions for reducing energy usage
  • Process Detection: Automatic identification of running LLM processes

How It Works

The CLI starts a local Python backend service that collects system metrics using psutil and pynvml. The web dashboard at envirollm.com/dashboard automatically detects if you're running the local service and switches to display your real hardware metrics instead of demo data.

Benchmarking through the CLI or at envirollm.com/optimize runs inference requests against your local models while monitoring energy consumption, token generation speed, and resource usage in real-time.

License

MIT