Package Exports
- fasttext
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (fasttext) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
node-fasttext
Nodejs binding for fasttext representation and classification.
This is a link to the Facebook fastText. A Library for efficient text classification and representation learning.
- FASTTEXT_VERSION = 12;
- FASTTEXT_FILEFORMAT_MAGIC_INT32 = 793712314;
Installation
Using npm:
npm install fasttext --save
fastText Classifier
According to fasttext.cc. We have a simple classifier for executing prediction models about cooking from stackexchange questions:
const path = require('path');
const fastText = require('fasttext');
const model = path.resolve(__dirname, './model_cooking.bin');
const classifier = new fastText.Classifier(model);
classifier.predict('Why not put knives in the dishwasher?', 5)
.then((res) => {
if (res.length > 0) {
let tag = res[0].label; // __label__knives
let confidence = res[0].value // 0.8787146210670471
console.log('classify', tag, confidence, res);
} else {
console.log('No matches');
}
});The model haved trained before with the followings params:
const path = require('path');
const fastText = require('fasttext');
let data = path.resolve(path.join(__dirname, '../data/cooking.train.txt'));
let model = path.resolve(path.join(__dirname, '../data/cooking.model'));
let classifier = new fastText.Classifier();
let options = {
input: data,
output: model,
loss: "softmax",
dim: 200,
bucket: 2000000
}
classifier.train('supervised', options)
.then((res) => {
console.log('model info after training:', res)
// Input <<<<< C:\projects\node-fasttext\test\data\cooking.train.txt
// Output >>>>> C:\projects\node-fasttext\test\data\cooking.model.bin
// Output >>>>> C:\projects\node-fasttext\test\data\cooking.model.vec
});Or you can train directly from the command line with fasttext builded from official source:
# Training
~/fastText/data$ ./fasttext supervised -input cooking.train -output model_cooking -lr 1.0 -epoch 25 -wordNgrams 2 -bucket 200000 -dim 50 -loss hs
Read 0M words
Number of words: 8952
Number of labels: 735
Progress: 100.0% words/sec/thread: 1687554 lr: 0.000000 loss: 5.247591 eta: 0h0m 4m
# Testing
~/fastText/data$ ./fasttext test model_cooking.bin cooking.valid
N 3000
P@1 0.587
R@1 0.254
Number of examples: 3000Nearest neighbor
Simple class for searching nearest neighbors:
const path = require('path');
const fastText = require('fasttext');
const model = path.resolve(__dirname, './skipgram.bin');
const query = new fastText.Query(model);
query.nn('word', 5, (err, res) => {
if (err) {
console.error(err);
} else if (res.length > 0) {
let tag = res[0].label; // letter
let confidence = res[0].value // 0.99992
console.log('Nearest neighbor', tag, confidence, res);
} else {
console.log('No matches');
}
});Build from source
See Installation Prerequisites.
# install dependencies and tools
npm install
# build node-fasttext from source
npm run build
# run unit-test
npm testContributing
Pull requests and stars are highly welcome.
For bugs and feature requests, please create an issue.