Package Exports
- hybrid-search-mcp
- hybrid-search-mcp/build/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (hybrid-search-mcp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Hybrid Search MCP Server (hybrid-search-mcp)
License: MIT
MCP server providing hybrid search capabilities using Meilisearch for full-text search and Qdrant for semantic vector search, powered by Cohere embeddings.
Prerequisites
- Node.js (Check
package.jsonfor version requirements) - Access to a running Qdrant instance
- Access to a running Meilisearch instance
- A Cohere API key
Configuration
This server requires the following environment variables to be set. You can create a .env file in the root directory to manage these:
COHERE_API_KEY="your_cohere_api_key"
QDRANT_ENDPOINT="your_qdrant_url" # e.g., http://localhost:6333
QDRANT_API_KEY="your_qdrant_api_key" # Optional, if Qdrant requires auth
MEILISEARCH_ENDPOINT="your_meilisearch_url" # e.g., http://localhost:7700
MEILISEARCH_API_KEY="your_meilisearch_api_key" # Optional, if Meilisearch requires auth
# Optional:
# COLLECTION_NAME="your_custom_collection_or_index_name" # Defaults to 'my_documents'Installation
npm installBuilding
npm run buildThis compiles the TypeScript source code to JavaScript in the build directory.
Running the Server
Production
npm startThis runs the compiled JavaScript code from the build directory.
Development
npm run devThis starts the TypeScript compiler in watch mode (tsc -w) and runs the server using node --watch, automatically restarting on changes.
Usage
Once running, the server communicates using the Model Context Protocol (MCP) over standard input/output (stdio). You can interact with it using an MCP client.
The server exposes the following tools:
store_document: Stores text in both Meilisearch and Qdrant.full_text_search: Performs a keyword search using Meilisearch.similarity_search: Performs a vector similarity search using Qdrant and Cohere embeddings.