Package Exports
- intelligent-text-chunking
- intelligent-text-chunking/dist/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (intelligent-text-chunking) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Intelligent Text Chunking
A powerful TypeScript library for intelligent text chunking with advanced document structure recognition, PDF support, and semantic boundary preservation.
Features
- 🧠 Intelligent Structure Recognition: Automatically detects headings, sections, and document patterns
- 📄 PDF Support: Page-aware chunking with page number metadata
- 🎯 Semantic Boundaries: Respects sentence, paragraph, and heading boundaries
- 📊 Rich Metadata: Comprehensive chunk information including headings, sections, and statistics
- 🔧 Flexible Configuration: Customizable chunk sizes, overlap, and boundary preferences
- 📚 Multiple Document Types: Supports academic papers, legal documents, technical docs, and more
Installation
npm install intelligent-text-chunking
Quick Start
Basic Usage
import { chunkTextIntelligently, ChunkingOptions } from 'intelligent-text-chunking';
const text = `
# Introduction
This is the introduction section with some content.
## Methodology
Here we describe our methodology in detail.
### Data Collection
We collected data from various sources.
## Results
Our results show significant improvements.
`;
const options: ChunkingOptions = {
maxChunkSize: 500,
overlapSize: 50,
respectHeadingBoundaries: true
};
const chunks = chunkTextIntelligently(text, options);
console.log(`Generated ${chunks.length} chunks`);
chunks.forEach((chunk, index) => {
console.log(`Chunk ${index + 1}:`);
console.log(` Heading: ${chunk.metadata.heading || 'None'}`);
console.log(` Level: ${chunk.metadata.headingLevel || 'N/A'}`);
console.log(` Words: ${chunk.metadata.wordCount}`);
console.log(` Text: ${chunk.text.substring(0, 100)}...`);
});
PDF-Specific Chunking
import { chunkPDFTextIntelligently } from 'intelligent-text-chunking';
// Extract text from PDF (using pdf2json or similar)
const pdfText = "Your PDF text content...";
const pageBreaks = [1000, 2000, 3000]; // Character positions of page breaks
const chunks = chunkPDFTextIntelligently(pdfText, pageBreaks, {
maxChunkSize: 800,
respectParagraphBoundaries: true
});
chunks.forEach(chunk => {
console.log(`Page ${chunk.metadata.pageNumber}: ${chunk.text.substring(0, 50)}...`);
});
Advanced Configuration
import { IntelligentChunker, ChunkingOptions } from 'intelligent-text-chunking';
const options: ChunkingOptions = {
maxChunkSize: 1000, // Maximum characters per chunk
minChunkSize: 200, // Minimum characters per chunk
overlapSize: 100, // Overlap between chunks
respectSentenceBoundaries: true, // Don't break mid-sentence
respectParagraphBoundaries: true, // Don't break mid-paragraph
respectHeadingBoundaries: true, // Don't break across headings
preserveHeadingHierarchy: true, // Maintain heading structure
maxHeadingLevel: 6 // Maximum heading level to recognize
};
const chunker = new IntelligentChunker(options);
const chunks = chunker.chunkText(yourText);
API Reference
Types
ChunkingOptions
interface ChunkingOptions {
maxChunkSize?: number; // Default: 1000
minChunkSize?: number; // Default: 200
overlapSize?: number; // Default: 100
respectSentenceBoundaries?: boolean; // Default: true
respectParagraphBoundaries?: boolean; // Default: true
respectHeadingBoundaries?: boolean; // Default: true
preserveHeadingHierarchy?: boolean; // Default: true
maxHeadingLevel?: number; // Default: 6
}
IntelligentChunk
interface IntelligentChunk {
text: string;
metadata: ChunkMetadata;
}
interface ChunkMetadata {
heading?: string; // Detected heading text
headingLevel?: number; // Heading level (1-6)
section?: string; // Section name
pageNumber?: number; // Page number (for PDFs)
chunkIndex: number; // Index of this chunk
totalChunks: number; // Total number of chunks
wordCount: number; // Word count in chunk
charCount: number; // Character count in chunk
startPosition: number; // Start position in original text
endPosition: number; // End position in original text
}
Functions
chunkTextIntelligently(text: string, options?: ChunkingOptions): IntelligentChunk[]
Chunks regular text intelligently based on document structure.
chunkPDFTextIntelligently(text: string, pageBreaks?: number[], options?: ChunkingOptions): IntelligentChunk[]
Chunks PDF text with page awareness and page number metadata.
IntelligentChunker
Main class for advanced chunking operations.
Supported Document Patterns
The library recognizes various document structures:
Academic Papers
- Abstract, Introduction, Conclusion
- References, Bibliography
- Numbered sections (1., 1.1, 1.1.1)
Legal Documents
- Articles, Sections, Chapters
- Roman numerals (I., II., III.)
- Lettered sections (A., B., C.)
Technical Documentation
- Overview, Implementation
- API Reference, Configuration
- Markdown headings (# ## ###)
General Documents
- All caps headings
- Title case with colons
- Table of contents patterns
Use Cases
- RAG Systems: Create semantic chunks for retrieval-augmented generation
- Document Analysis: Process and analyze structured documents
- Search Systems: Build searchable document chunks with metadata
- Content Management: Organize and structure document content
- AI Training: Prepare text data for machine learning models
Examples
Academic Paper Processing
const academicText = `
Abstract
This paper presents a novel approach to text processing.
1. Introduction
Text processing is a fundamental task in NLP.
1.1 Background
Previous work has shown...
2. Methodology
We propose a new algorithm...
3. Results
Our experiments demonstrate...
References
[1] Smith, J. (2023). Text Processing...
`;
const chunks = chunkTextIntelligently(academicText);
// Automatically detects Abstract, Introduction, Methodology, Results, References
Legal Document Processing
const legalText = `
Article 1. Definitions
For the purposes of this agreement...
Section 2.1. Rights and Obligations
Each party shall have the right to...
Chapter III. Termination
This agreement may be terminated...
`;
const chunks = chunkTextIntelligently(legalText);
// Recognizes Article, Section, Chapter structure
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
License
MIT License - see LICENSE file for details.
Changelog
1.0.0
- Initial release
- Intelligent text chunking with structure recognition
- PDF support with page awareness
- Comprehensive metadata support
- TypeScript definitions included