Package Exports
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (jpandas) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
π A lightweight JavaScript package for working with tabular data, inspired by pandas in Python..
jpandas
- π¦ Easy creation of tabular data structures in JavaScript.
- π¦ Provides a DataFrame class inspired by pandas in Python.
- π¨βπ« Developed by Rajnish.
Table of Contents
Installation
npm install jpandas
or
yarn add jpandas
Usage
Hereβs a quick example of how to use the DataFrame Library in your project:
import DataFrame from 'jpandas';
const data = [
{ Name: 'Ankit', Age: 23, University: 'BHU' },
{ Name: 'Aishwarya', Age: 21, University: 'JNU' }
];
const df = new DataFrame(data);
console.log(df.getRowCount()); // Outputs: 2
Creating DataFrames
From an Array
You can create a DataFrame from a 2D array:
const data = [
[1, 4, 7],
[2, 5, 8],
[3, 6, 9]
];
const df = new DataFrame(data);
console.log(df.getRowCount()); // Outputs: 3
From an Object
You can also create a DataFrame from an object where keys are column names:
const data = {
Name: ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
Age: [23, 21, 22, 21],
University: ['BHU', 'JNU', 'DU', 'BHU']
};
const df = new DataFrame(data);
console.log(df.getValue(0, 'Name')); // Outputs: 'Ankit'
From CSV String
To create a DataFrame from a CSV string:
const csvData = `Name,Age,University\nAnkit,23,BHU\nAishwarya,21,JNU`;
const df = new DataFrame(csvData);
console.log(df.getValue(1, 'Age')); // Outputs: 21
From JSON String
You can also create a DataFrame from a JSON string:
const jsonString = `[{"Name": "Ankit", "Age": 23, "University": "BHU"}, {"Name": "Aishwarya", "Age": 21, "University": "JNU"}]`;
const df = new DataFrame(JSON.parse(jsonString));
console.log(df.getValue(1, 'University')); // Outputs: 'JNU'
DataFrame Operations
Group By
Group your DataFrame by a specific column:
const grouped = df.groupBy('University');
console.log(Object.keys(grouped).length); // Outputs: number of unique universities
Rename Columns
You can rename columns easily:
const renamedDf = df.rename({ a: 'x', b: 'y' });
console.log(renamedDf.getColumns()); // Outputs: ['x', 'y', 'c']
Transform DataFrame
Transform your DataFrame using a custom function:
const transformedDf = df.transform(row => ({
FullName: row.Name,
Age: row.Age + 1
}));
console.log(transformedDf.getValue(0, 'FullName')); // Outputs: 'Ankit'
Calculate Mean
Calculate the mean of a numeric column:
const meanAge = df.mean('Age');
console.log(meanAge); // Outputs: average age
Contributing
License
- BSD-3-Clause Β© Rajnish Singh