JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • 0
  • Score
    100M100P100Q22657F
  • License MIT

online average, variance, covariance and correlation

Package Exports

  • lazy-stats
  • lazy-stats/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (lazy-stats) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

lazy-stats

online average, variance, covariance and correlation

ExampleFeaturesLimitationsAPILicense

Example

import LazyStats from 'lazy-stats'
const stat = new LazyStats(3), // for 3 random variables

stat.push(2,1,0)
stat.push([1,1,1])
stat.push(0,1,2)

const average0 = stat.ave(0),
      average1 = stat.ave(1),
      variance2 = stat.var(2),
      covariance12 = stat.cov(1,2),
      correlation20 = stat.cor(2,0)

Features

Limitations

  • all variables must have the same number of samples, pushed at the same time
  • no skew and kurtosis

API

Properties

  • .N number: total samples received
  • .data Float64Array: transferable memory copy = new LazyStats( main.data )

Methods

  • .push(number0, number1, ...) => {number} sampleSize - add sample value(s) and returns the sampe size
  • .push([number0, number1, ...]) => {number} sampleSize - add array of sample value(s) and returns the sampe size
  • .ave(index) => {number} - average of a given dataset
  • .var(index) => {number} - variance of a given dataset
  • .dev(index) => {number} - standard deviation of a given dataset
  • .cov(j, i) => {number} - covariance between two datasets
  • .cor(j, i) => {number} - correlation between two datasets
  • .slope(j, i) => {number} - slope for y=set[j] and x=set[i]
  • .intercept(j, i) => {number} - intercept for y=set[j] and x=set[i]
  • .reset() => {object} this - clears all sums and counts back to 0

License

Released under the MIT License