JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 9
  • Score
    100M100P100Q51559F
  • License MIT

Advanced CLI tool to check which LLM models your computer can run locally, with Ollama integration and sLLM support

Package Exports

  • llm-checker
  • llm-checker/src/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (llm-checker) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

LLM Checker 2.0 🚀

Advanced CLI tool that scans your hardware and tells you exactly which LLM or sLLM models you can run locally, with full Ollama integration.


✨ What’s New in v2.0

  • 🦙 Full Ollama integration – Detects installed models, benchmarks performance and handles downloads automatically
  • 🐣 sLLM (Small Language Model) support – From 0.5 B all the way up to ultra‑efficient models
  • 📊 Expanded model database – 40 + models including Gemma 3, Phi‑4, DeepSeek‑R1, Qwen 2.5
  • 🎯 Improved compatibility analysis – Granular 0‑100 scoring system
  • 🏷️ Detailed categorisation – ultra‑small, small, medium, large, embedding, multimodal
  • Performance estimation – tokens/s, memory footprint, energy consumption
  • 🧠 Use‑case‑based recommendations – general, code, chat, embeddings, multimodal
  • 📱 Redesigned CLI – cleaner UX with colours & emojis

🚀 Installation

npm install -g llm-checker
# 1 Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh

# 2 Install LLM Checker
npm install -g llm-checker

# 3 Verify
llm-checker check

Option 3 – Local development

git clone https://github.com/developer31f/llm-checker.git
cd llm-checker
npm install
npm link

📖 Usage

Main command – full analysis

# Full system scan + Ollama detection
llm-checker check

# Detailed hardware info
llm-checker check --detailed

# Run a performance benchmark
llm-checker check --performance-test

Filter by model category

llm-checker check --filter ultra_small   # Models < 1 B params
llm-checker check --filter small         # 1–4 B
llm-checker check --filter medium        # 5–15 B
llm-checker check --filter large         # > 15 B

Filter by specialisation

llm-checker check --filter code         # Programming models
llm-checker check --filter chat         # Conversational
llm-checker check --filter multimodal   # Vision + text
llm-checker check --filter embeddings   # Embedding models

Use‑case presets

llm-checker check --use-case code        # Optimised for coding
llm-checker check --use-case chat        # Optimised for conversation
llm-checker check --use-case embeddings  # Semantic search

Ollama‑only / include cloud

llm-checker check --ollama-only          # Only local models
llm-checker check --include-cloud        # Include cloud models for comparison

Ollama management

# List installed models
llm-checker ollama --list

# Show running models
llm-checker ollama --running

# Benchmark a specific model
llm-checker ollama --test llama3.2:3b

# Download a model
llm-checker ollama --pull phi3:mini

# Remove a model
llm-checker ollama --remove old-model:tag

Explore the model database

llm-checker browse                 # All models
llm-checker browse --category small
llm-checker browse --year 2024
llm-checker browse --multimodal

Help commands

llm-checker --help                # Global help
llm-checker check --help          # Help for a specific command
llm-checker ollama --help

🎯 Example output

High‑end system with Ollama

🖥️  System Information:
CPU: Apple M2 Pro (12 cores, 3.5 GHz)
Architecture: Apple Silicon
RAM: 32 GB total (24 GB free, 25 % used)
GPU: Apple M2 Pro (16 GB VRAM, dedicated)
OS: macOS Sonoma 14.2.1 (arm64)

🏆 Hardware Tier: HIGH (Overall Score: 92/100)

🦙 Ollama Status: ✅ Running (v0.1.17)
📦 Local Models: 5 installed
🚀 Running Models: llama3.1:8b

⚡ Performance Benchmark:
CPU Score: 95/100
Memory Score: 88/100
Overall Score: 91/100

✅ Compatible Models (Score ≥ 75):
┌─────────────────────┬──────────┬───────────┬──────────┬──────────┬───────────┬──────────┐
│ Model               │ Size     │ Score     │ RAM      │ VRAM     │ Speed     │ Status   │
├─────────────────────┼──────────┼───────────┼──────────┼──────────┼───────────┼──────────┤
│ Llama 3.1 8B        │ 8 B      │ 98/100    │ 8 GB     │ 4 GB     │ medium    │ 📦 🚀    │
│ Mistral 7B v0.3     │ 7 B      │ 97/100    │ 8 GB     │ 4 GB     │ medium    │ 📦       │
│ CodeLlama 7B        │ 7 B      │ 97/100    │ 8 GB     │ 4 GB     │ medium    │ 💻       │
│ Phi‑3 Mini 3.8B     │ 3.8 B    │ 99/100    │ 4 GB     │ 2 GB     │ fast      │          │
│ Gemma 3 1B          │ 1 B      │ 100/100   │ 2 GB     │ 0 GB     │ very_fast │          │
└─────────────────────┴──────────┴───────────┴──────────┴──────────┴───────────┴──────────┘

Resource‑limited system

🖥️  System Information:
CPU: Intel Core i5‑8400 (6 cores, 2.8 GHz)
Architecture: x86‑64
RAM: 8 GB total (3 GB free, 62 % used)
GPU: Intel UHD Graphics 630 (0 GB VRAM, integrated)
OS: Ubuntu 22.04 LTS (x64)

🏆 Hardware Tier: LOW (Overall Score: 45/100)

🦙 Ollama Status: ❌ Ollama not running (connection refused)

🔧 Supported models (40 +)

🐣 Ultra‑small (< 1 B params)

  • Qwen 0.5B – Ultra lightweight, requires 1 GB RAM
  • LaMini‑GPT 774 M – Multilingual compact model, 1.5 GB RAM

🐤 Small (1 – 4 B)

  • TinyLlama 1.1 B – Perfect for testing, 2 GB RAM
  • Gemma 3 1 B – Mobile‑optimised, 2 GB RAM, 32 K context
  • MobileLLaMA 1.4 B / 2.7 B – 40 % faster than TinyLlama
  • Llama 3.2 1 B / 3 B – Compact Meta models
  • Phi‑3 Mini 3.8 B – Great reasoning from Microsoft, 4 GB RAM
  • Gemma 2 B – Efficient Google model, 3 GB RAM

🐦 Medium (5 – 15 B)

  • Llama 3.1 8 B – Perfect balance, 8 GB RAM
  • Mistral 7 B v0.3 – High‑quality EU model, 8 GB RAM
  • Qwen 2.5 7 B – Multilingual with strong coding ability
  • CodeLlama 7 B – Specialised for coding, 8 GB RAM
  • DeepSeek Coder 6.7 B – Advanced code generation
  • Phi‑4 14 B – Latest Microsoft model with improved capabilities
  • Gemma 3 4 B – Multimodal with long context (128 K)

🦅 Large (> 15 B)

  • Llama 3.3 70 B – Meta flagship, 48 GB RAM
  • DeepSeek‑R1 70 B – Advanced reasoning (o1‑style)
  • Mistral Small 3.1 22 B – High‑end EU model
  • Gemma 3 12 B / 27 B – Google multimodal flagships
  • CodeLlama 34 B – Heavy coding tasks, 24 GB RAM
  • Mixtral 8×7 B – Mixture‑of‑Experts, 32 GB RAM

🖼️ Multimodal (Vision + text)

  • LLaVA 7 B – Image understanding, 10 GB RAM
  • LLaVA‑NeXT 34 B – Advanced vision capabilities
  • Gemma 3 4 B / 12 B / 27 B – Google multimodal family
  • all‑MiniLM‑L6‑v2 – Compact 0.5 GB embedding model
  • BGE‑small‑en‑v1.5 – High‑quality English embeddings

☁️ Cloud models (for comparison)

  • GPT‑4 – OpenAI, requires API key & internet
  • Claude 3.5 Sonnet – Anthropic, 200 K context

🛠️ Advanced Ollama integration

Automatic model management

llm-checker ollama --list       # Details of every local model
llm-checker ollama --running    # Monitor VRAM usage
llm-checker ollama --test llama3.1:8b

Smart installation

# After analysis, install all recommended models automatically
llm-checker check --filter small | grep "ollama pull" | bash

Real‑time model comparison

for model in $(ollama list | grep -v NAME | awk '{print $1}'); do
  echo "Testing $model:"
  llm-checker ollama --test $model
done

📊 Detailed compatibility system

Scoring scale (0‑100)

Score Meaning
90‑100 🟢 Excellent – full speed, all features
75‑89 🟡 Very good – great performance
60‑74 🟠 Marginal – usable with tweaks / quantisation
40‑59 🔴 Limited – only for testing
0‑39 Incompatible – missing critical hw

Compatibility factors

  1. Total RAM vs requirement (40 %)
  2. Available VRAM (25 %)
  3. CPU cores (15 %)
  4. CPU architecture (10 %)
  5. Quantisation availability (10 %)

Hardware tiers

  • 🚀 ULTRA_HIGH – 64 GB RAM, 32 GB VRAM, 12+ cores
  • HIGH – 32 GB RAM, 16 GB VRAM, 8+ cores
  • 🎯 MEDIUM – 16 GB RAM, 8 GB VRAM, 6+ cores
  • 💻 LOW – 8 GB RAM, 2 GB VRAM, 4+ cores
  • 📱 ULTRA_LOW – below the above

⚙️ Advanced configuration

Environment variables

export OLLAMA_BASE_URL=http://localhost:11434
export LLM_CHECKER_RAM_GB=16
export LLM_CHECKER_VRAM_GB=8
export LLM_CHECKER_CPU_CORES=8
export LLM_CHECKER_LOG_LEVEL=debug
export LLM_CHECKER_CACHE_DIR=/custom/cache
export NO_COLOR=1

Configuration file ~/.llm-checker.json

{
  "analysis": {
    "defaultUseCase": "code",
    "performanceTesting": true,
    "includeCloudModels": false
  },
  "ollama": {
    "baseURL": "http://localhost:11434",
    "enabled": true,
    "timeout": 30000
  },
  "display": {
    "maxModelsPerTable": 15,
    "showEmojis": true,
    "compactMode": false
  },
  "filters": {
    "minCompatibilityScore": 70,
    "excludeModels": ["very-large-model"]
  },
  "customModels": [
    {
      "name": "Custom Model 7B",
      "size": "7B",
      "requirements": { "ram": 8, "vram": 4 }
    }
  ]
}

🎮 Specific use cases

Coding

llm-checker check --use-case code --filter medium
ollama pull $(llm-checker check --use-case code --ollama-only | grep "ollama pull" | head -1 | awk '{print $3}')
echo "def fibonacci(n):" | ollama run codellama:7b "Complete this Python function"

Chatbots / assistants

llm-checker check --use-case chat --filter small,medium
ollama pull llama3.2:3b
ollama run llama3.2:3b "Hello! How can you help me today?"

Semantic search / RAG

llm-checker check --filter embeddings
ollama pull all-minilm

Multimodal analysis

llm-checker check --multimodal
ollama pull llava:7b
# echo "image.jpg" | ollama run llava:7b "Describe this image"

🔍 Troubleshooting

Ollama not detected

curl http://localhost:11434/api/version          # Should return JSON

# Install or start service
curl -fsSL https://ollama.ai/install.sh | sh
sudo systemctl start ollama                      # Linux

Incorrect hardware detection

llm-checker check --detailed
export LLM_CHECKER_RAM_GB=16
export LLM_CHECKER_VRAM_GB=8
llm-checker check

Models marked as incompatible

llm-checker check --min-score 0
llm-checker check --include-marginal
llm-checker check --quantization Q2_K

Permission errors (Linux/macOS)

sudo chmod +r /sys/class/dmi/id/*
sudo chmod +r /proc/meminfo
sudo llm-checker check

🧪 Programmatic API (Node)

const LLMChecker = require('llm-checker');
const OllamaClient = require('llm-checker/ollama');

const checker = new LLMChecker();
const analysis = await checker.analyze({
  useCase: 'code',
  includeCloud: false,
  performanceTest: true
});

console.log('Compatible models:', analysis.compatible);

const ollama = new OllamaClient();
const localModels = await ollama.getLocalModels();

🚀 CI/CD Workflows

GitHub Actions

name: LLM Compatibility Check
on: [push, pull_request]

jobs:
  llm-check:
    runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v4

    - name: Setup Node.js
      uses: actions/setup-node@v4
      with:
        node-version: '18'

    - name: Install LLM Checker
      run: npm install -g llm-checker

    - name: Check LLM Compatibility
      run: |
        llm-checker check --format json > compatibility.json
        cat compatibility.json

    - name: Upload Results
      uses: actions/upload-artifact@v4
      with:
        name: llm-compatibility
        path: compatibility.json

Docker integration

FROM node:18-alpine

RUN apk add --no-cache dmidecode lm-sensors
RUN npm install -g llm-checker

COPY analyze.sh /usr/local/bin/
RUN chmod +x /usr/local/bin/analyze.sh

CMD ["analyze.sh"]

🤝 Contributing

Local development

git clone https://github.com/developer31f/llm-checker.git
cd llm-checker
npm install
npm test
npm run dev check
npm link

Adding new models

Edit src/models/expanded_database.js:

{
  name: "New Model 7B",
  size: "7B",
  type: "local",
  category: "medium",
  requirements: { ram: 8, vram: 4, cpu_cores: 4, storage: 7 },
  frameworks: ["ollama", "llama.cpp"],
  quantization: ["Q4_0", "Q4_K_M", "Q5_0"],
  performance: {
    speed: "medium",
    quality: "very_good",
    context_length: 8192,
    tokens_per_second_estimate: "15-30"
  },
  installation: {
    ollama: "ollama pull new-model:7b",
    description: "Description of the new model"
  },
  specialization: "general",
  languages: ["en"],
  year: 2024
}

Improving hardware detection

Edit src/hardware/detector.js:

detectNewGPU(gpu) {
  const model = gpu.model.toLowerCase();
  if (model.includes('new-gpu')) {
    return {
      dedicated: true,
      performance: 'high',
      optimizations: ['new-api']
    };
  }
  return null;
}

Contribution guide

  1. Fork the repository
  2. Create a feature branch git checkout -b feature/awesome-feature
  3. Commit your changes git commit -am 'Add awesome feature'
  4. Push the branch git push origin feature/awesome-feature
  5. Open a Pull Request

Reporting issues

Include the following:

llm-checker check --detailed --export json > debug-info.json
DEBUG=1 llm-checker check > debug.log 2>&1
uname -a
node --version
npm --version

📊 Roadmap

v2.1 (Q2 2025)

  • 🔌 Plugin system for extensions
  • 📱 Mobile optimisations
  • 🌐 Optional web UI
  • 📈 Usage metrics & analytics
  • 🔄 Automatic model DB updates

v2.2 (Q3 2025)

  • 🤖 More back‑end frameworks (MLX, TensorRT)
  • ☁️ Local vs cloud auto comparison
  • 🎯 Fine‑tuning advisor
  • 📊 Historical performance dashboard
  • 🔒 Enterprise mode

v3.0 (Q4 2025)

  • 🧠 AI performance predictor
  • 🔄 Multi‑model orchestration
  • 📱 Mobile companion app
  • 🌍 Advanced multilingual models
  • 🚀 Public cloud integrations

🏆 Credits

Technologies used

  • systeminformation – cross‑platform HW detection
  • Ollama – local LLM management
  • Commander.js – CLI framework
  • Chalk – terminal colours
  • Ora – elegant spinners

Communities & projects

  • llama.cpp – efficient LLM inference
  • Hugging Face – model & dataset hub
  • Meta Llama – open‑source Llama models
  • Mistral AI – European LLMs
  • Google Gemma – open Gemma family

Contributors

Special thanks

  • The Ollama team for an amazing local LLM tool
  • Georgi Gerganov for llama.cpp
  • The open‑source community for making AI accessible

📄 License

MIT – see LICENSE for details.


💝 Support the project

If LLM Checker saves you time:

Star the repo
🐛 Report bugs & suggest features
🤝 Contribute code or docs
📢 Share with fellow devs
Buy me a coffee


Got questions? 💬 Open an issue
Want to contribute? 🚀 Read the guide
Need advanced usage? 📚 Full docs

Made with ❤️ for the open‑source AI community