Package Exports
- ltcache
- ltcache/dist/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ltcache) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
ltcache
A lightweight, in-memory caching library - like Redis but much simpler. Features TTL support, concurrent request handling, and comprehensive statistics. Perfect for Node.js applications and frontend applications that need fast caching without the complexity of Redis.
โจ Features
- ๐ Lightweight: Zero external dependencies, minimal memory footprint
- โฑ๏ธ TTL Support: Automatic expiration with configurable time-to-live
- ๐ Concurrent Safe: Multiple simultaneous requests for the same key only call the function once
- ๐ Statistics: Built-in hit rate tracking and cache size monitoring
- ๐ฏ Pattern Removal: Remove multiple keys using regex patterns
- ๐ TypeScript: Full type safety with generics
- โก Fast: In-memory storage for maximum performance
- ๐ Universal: Works in Node.js, browsers, React, Vue, and other frontend frameworks
๐ฆ Installation
npm install ltcache๐ Quick Start
import {cache} from 'ltcache';
// Create a cache instance
const cacheInstance = cache();
// Create a cache instance with debug logging enabled
const debugCache = cache(true);
// Simple caching
cacheInstance.set('user:123', {name: 'Alice', email: 'alice@example.com'}, 3600); // 1 hour TTL
const user = await cacheInstance.get('user:123');
// Caching with fallback function
const user = await cacheInstance.get('user:123', async () => {
// This function only runs if the key doesn't exist
return await fetchUserFromDatabase(123);
}, 3600); // Cache for 1 hour
// Get cache statistics
const stats = cacheInstance.report();
console.log(`Hit rate: ${stats.hitRate}%`);๐ Documentation
- API Reference - Complete API documentation
- Examples - Common usage patterns and examples
๐ฏ Use Cases
Perfect for:
- API Response Caching: Cache expensive API calls
- Database Query Results: Store frequently accessed data
- Configuration Storage: Cache app configuration
- Session Data: Store temporary user session information
- Microservices: Lightweight caching between services
- Frontend Apps: Cache API responses, user preferences, and computed data in React, Vue, and other frameworks
- Browser Storage: Lightweight alternative to localStorage with TTL support
- SPA Performance: Improve app responsiveness by caching expensive operations
When to use ltcache vs Redis:
Use ltcache when:
- You need simple, fast caching
- You want zero external dependencies
- Your cache fits in memory
- You don't need persistence across restarts
- You want minimal setup and configuration
- You're building frontend applications (React, Vue, etc.) and need client-side caching
Use Redis when:
- You need persistence across application restarts
- You need to share cache across multiple applications (though ltcache could be used as the foundation for a Redis-style server)
- You need advanced data structures (lists, sets, etc.)
- You need pub/sub functionality
- You need clustering or replication
๐ง Advanced Usage
Debug Mode
Enable debug logging to see cache operations in real-time:
// Create cache with debug logging enabled
const cache = cache(true);
// All cache operations will now log to console
await cache.get('user:123', async () => {
return await fetchUserFromDatabase(123);
});
// Output: miss: user:123
// Output: set: user:123
await cache.get('user:123');
// Output: hit: user:123Concurrent Request Handling
// Multiple simultaneous requests for the same key
const promises = [
cache.get('expensive-data', async () => {
await new Promise(resolve => setTimeout(resolve, 1000));
return 'result';
}),
cache.get('expensive-data', async () => {
await new Promise(resolve => setTimeout(resolve, 1000));
return 'result';
}),
cache.get('expensive-data', async () => {
await new Promise(resolve => setTimeout(resolve, 1000));
return 'result';
})
];
const results = await Promise.all(promises);
// All three promises resolve to the same value
// The expensive function is only called oncePattern-based Removal
// Cache some data
cache.set('user:123:profile', profileData);
cache.set('user:123:settings', settingsData);
cache.set('user:456:profile', profileData2);
cache.set('config:app', appConfig);
// Remove all user data for user 123
cache.remove(/^user:123:/);
// Remove all user profiles
cache.remove(/^user:.*:profile$/);
// Remove all config
cache.remove(/^config:/);Cache Statistics
const stats = cache.report();
console.log({
items: stats.numItems, // Number of cached items
hitRate: stats.hitRate, // Hit rate percentage
sizeKb: stats.sizeKb // Estimated memory usage
});๐งช Testing
npm test๐ License
MIT License - see LICENSE file for details.
๐ค Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
๐ Performance
ltcache is designed for speed and efficiency:
- Memory efficient: Uses Map for O(1) lookups
- Concurrent safe: Handles multiple simultaneous requests efficiently
- Minimal overhead: Zero external dependencies
- Fast expiration: Efficient timeout management
๐ Related Projects
- Redis - Full-featured in-memory data store
- node-cache - Another Node.js caching library
- lru-cache - LRU cache implementation
Made with โค๏ธ by Marc H. Weiner