JSPM

math-float64-frexp

1.0.0
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 351
  • Score
    100M100P100Q102281F
  • License MIT

Splits a double-precision floating-point number into a normalized fraction and an integer power of two.

Package Exports

  • math-float64-frexp

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (math-float64-frexp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

frexp

NPM version Build Status Coverage Status Dependencies

Splits a double-precision floating-point number into a normalized fraction and an integer power of two.

Installation

$ npm install math-float64-frexp

Usage

var frexp = require( 'math-float64-frexp' );

frexp( x )

Splits a double-precision floating-point number into a normalized fraction and an integer power of two.

var out = frexp( 4 );
// returns [ 0.5, 3 ]

The first element of the returned array is the normalized fraction and the second is the exponent. The normalized fraction and exponent satisfy the relation x = frac * 2**exp.

var pow = require( 'math-power' );

var x = 4;
var out = frexp( x );
// returns [ 0.5, 3 ]

var frac = out[ 0 ];
var exp = out[ 1 ];

var bool = ( x === frac * pow(2,exp) );
// returns true

If provided positive or negative zero, NaN, or positive or negative infinity, the function returns a two-element array containing the input value and an exponent equal to 0.

var out = frexp( 0 );
// returns [ 0, 0 ]

out = frexp( -0 );
// returns [ -0, 0 ]

out = frexp( NaN );
// returns [ NaN, 0 ]

out = frexp( Number.POSITIVE_INFINITY );
// returns [ +infinity, 0 ]

out = frexp( Number.NEGATIVE_INFINITY );
// returns [ -infinity, 0 ]

For all other numeric input values, the absolute value of the normalized fraction resides on the interval [1/2,1).

Notes

  • Care should be taken when reconstituting a double-precision floating-point number from a normalized fraction and an exponent. For example,

    var pow = require( 'math-power' );
    
    // x ~ 2**1023
    var x = 8.988939926493918e+307;
    
    var out = frexp( x );
    // returns [ 0.5000263811533315, 1024 ]
    
    // Naive reconstitution:
    var y = out[ 0 ] * pow( 2, out[ 1 ] );
    // returns +infinity
    
    // Account for 2**1024 evaluating as infinity by recognizing 2**1024 = 2**1 * 2**1023:
    y = out[ 0 ] * pow( 2, out[1]-1023 ) * pow( 2, 1023 );
    // returns 8.988939926493918e+307

Examples

var round = require( 'math-round' );
var pow = require( 'math-power' );
var frexp = require( 'math-float64-frexp' );

var sign;
var frac;
var exp;
var x;
var f;
var v;
var i;

// Generate random numbers and break each into a normalized fraction and an integer power of two...
for ( i = 0; i < 100; i++ ) {
    if ( Math.random() < 0.5 ) {
        sign = -1;
    } else {
        sign = 1;
    }
    frac = Math.random() * 10;
    exp = round( Math.random()*616 ) - 308;
    x = sign * frac * pow( 10, exp );
    f = frexp( x );
    if ( f[ 1 ] > 1023 ) {
        v = f[ 0 ] * pow( 2, f[1]-1023 ) * pow( 2, 1023 );
    } else {
        v = f[ 0 ] * pow( 2, f[ 1 ] );
    }
    console.log( '%d = %d * 2^%d = %d', x, f[ 0 ], f[ 1 ], v );
}

To run the example code from the top-level application directory,

$ node ./examples/index.js

Tests

Unit

This repository uses tape for unit tests. To run the tests, execute the following command in the top-level application directory:

$ make test

All new feature development should have corresponding unit tests to validate correct functionality.

Test Coverage

This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:

$ make test-cov

Istanbul creates a ./reports/coverage directory. To access an HTML version of the report,

$ make view-cov

Browser Support

This repository uses Testling for browser testing. To run the tests in a (headless) local web browser, execute the following command in the top-level application directory:

$ make test-browsers

To view the tests in a local web browser,

$ make view-browser-tests

License

MIT license.

Copyright © 2016. The Compute.io Authors.