Package Exports
- mcp-stream-parser
- mcp-stream-parser/dist/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (mcp-stream-parser) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
MCP Stream Parser
A stream parser for Claude's message API that provides real-time access to:
- Text content with natural reading speed simulation
- Immediate thought process updates
- Real-time action/tool invocations
- Typing indicators
- Error handling
Installation
npm install @anthropic-ai/mcp-stream-parser
Quick Start
import { AnthropicStreamParser } from '@anthropic-ai/mcp-stream-parser';
const parser = new AnthropicStreamParser({
apiKey: 'your-api-key',
// Enable throttling for natural reading speed
throttle: {
enabled: true,
readingSpeed: 250, // words per minute
minPause: 100, // ms between emissions
maxBuffer: 200 // characters
}
});
// Regular text content (throttled for natural reading)
parser.on('text', event => {
console.log('Text:', event.content);
// event.splitInfo available if content was split
});
// Immediate thought updates
parser.on('thought', event => {
console.log('Thought:', event.content);
// event.hasAction indicates if an action follows
});
// Immediate action/tool invocations
parser.on('action', event => {
console.log('Action:', event.name);
console.log('Parameters:', event.params);
// event.thoughtContent available if preceded by thought
});
// Real-time typing indicators
parser.on('typing', event => {
if (event.isTyping) {
console.log('Claude is typing...');
} else {
console.log('Claude stopped typing');
}
});
// Detailed error handling
parser.on('error', event => {
if (event.fatal) {
console.error('Fatal error:', event.error);
} else {
console.warn('Non-fatal error:', event.error);
}
// event.partialContent available for recovery
});
// Send a message
await parser.sendMessage({
model: 'claude-3-opus-20240229',
content: 'Hello Claude!',
maxTokens: 1024, // optional
systemPrompt: { // optional
content: 'Custom system prompt',
prependInstructions: true
}
});
Event Types
Text Event
Regular text content from Claude. These events are throttled based on the throttling configuration to provide a natural reading experience:
interface TextEvent {
type: 'text';
content: string;
offset: number;
blockIndex?: number;
splitInfo?: {
position: number;
reason: string;
};
}
Thought Event
Claude's thought process. These events are emitted immediately without throttling to ensure responsive feedback:
interface ThoughtEvent {
type: 'thought';
content: string;
offset: number;
blockIndex?: number;
hasAction: boolean; // Indicates if this thought leads to an action
}
Action Event
Tool/action invocations from Claude. These events are emitted immediately without throttling:
interface ActionEvent {
type: 'action';
name: string;
params: Record<string, unknown>;
offset: number;
blockIndex?: number;
thoughtContent?: string; // Available if preceded by a thought
}
Typing Event
Real-time typing status updates:
interface TypingEvent {
type: 'typing';
isTyping: boolean;
offset: number;
blockIndex?: number;
}
Error Event
Detailed error information:
interface ErrorEvent {
type: 'error';
error: Error;
fatal: boolean;
offset: number;
blockIndex?: number;
partialContent?: string; // Available for content recovery
}
Configuration
The parser supports detailed configuration for all aspects of its operation:
const parser = new AnthropicStreamParser({
apiKey: 'your-api-key',
// Parser operation mode
mode: 'message', // or 'stream'
// System prompt handling
systemPrompt: {
content: 'Your custom system prompt',
prependInstructions: true // or false
},
// Message handling
message: {
maxLength: 2000,
splitPoints: ['\n\n', '. ', ' '],
overflow: 'split' // or 'error'
},
// Buffer management
buffer: {
maxSize: 64 * 1024, // 64KB
overflow: 'error', // or 'truncate'
flushOnNewline: true
},
// Natural reading speed simulation
throttle: {
enabled: true,
readingSpeed: 250, // words per minute
minPause: 100, // minimum pause between emissions in ms
maxBuffer: 200 // maximum characters before forced emission
},
// Debug options
debug: {
enabled: true,
state: true, // log state transitions
events: true, // log event emissions
buffer: true, // log buffer operations
json: true, // log JSON parsing
stream: true, // log raw stream chunks
logger: console.debug
}
});
Error Handling
The parser provides comprehensive error handling with the ability to recover partial content:
parser.on('error', event => {
const { error, fatal, partialContent } = event;
if (fatal) {
console.error('Fatal error:', error);
// Handle unrecoverable error
} else {
console.warn('Non-fatal error:', error);
// Continue processing
}
if (partialContent) {
console.log('Partial content:', partialContent);
// Handle incomplete content
}
});
Memory Management
The MCP Stream Parser is optimized for efficient memory usage, particularly important when processing large volumes of streaming content.
Memory Optimization
The parser implements several memory optimization strategies:
Efficient String Management: The
TextBuffer
class minimizes string duplication and manages content efficiently.Resource Cleanup: All components implement proper cleanup methods that should be called when done:
// Always call cleanup when finished with a parser await parser.cleanup();
Reference Management: The parser explicitly breaks circular references to help garbage collection.
Buffer Size Limits: Configure appropriate buffer sizes for your use case:
const parser = new MCPStreamParser({ buffer: { maxSize: 4096, // Adjust based on your needs overflow: 'error' // Or 'truncate' for long-running streams } });
Adapters for Collab-Spec Integration
MCP Stream Parser includes adapter modules to facilitate integration with the collaborative specification (collab-spec) system. These adapters provide a bridge between the internal types used by MCP Stream Parser and the types expected by collab-spec systems.
Using Adapters
import { AnthropicStreamParser } from '@anthropic-ai/mcp-stream-parser';
import { CollabSpecAdapter, StateAdapter } from '@anthropic-ai/mcp-stream-parser/adapters';
// Create parser and adapters
const parser = new AnthropicStreamParser({ apiKey: 'your-api-key' });
const eventAdapter = new CollabSpecAdapter();
const stateAdapter = new StateAdapter();
// Convert events to collab-spec format
parser.on('text', event => {
const collabEvent = eventAdapter.toCollabSpecTextEvent(event);
// Use collabEvent with collab-spec systems
});
// Convert parser state to collab-spec format
function updateState() {
if (parser.getState) {
const collabState = stateAdapter.toCollabSpecState(parser.getState());
// Use collabState with collab-spec systems
}
}
Complete Integration Bridge
For convenience, a complete integration bridge is provided that handles all event and state conversions:
import { MCPCollabSpecBridge } from '@anthropic-ai/mcp-stream-parser/adapters/usage-example';
const bridge = new MCPCollabSpecBridge({
apiKey: 'your-api-key',
// other config options
});
// Use the bridge like a regular parser
bridge.sendMessage('Hello!');
// Clean up when done
bridge.dispose();
For more details on adapters, see the Adapters Documentation.
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.