JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 66548
  • Score
    100M100P100Q166673F
  • License MIT

K-Means clustering

Package Exports

  • ml-kmeans
  • ml-kmeans/lib-esm/kmeans.js
  • ml-kmeans/lib/kmeans.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-kmeans) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

ml-kmeans

K-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.

Zakodium logo

Maintained by Zakodium

NPM version Test coverage npm download

Installation

npm i ml-kmeans

API Documentation

Example

const kmeans = require('ml-kmeans');

let data = [
  [1, 1, 1],
  [1, 2, 1],
  [-1, -1, -1],
  [-1, -1, -1.5],
];
let centers = [
  [1, 2, 1],
  [-1, -1, -1],
];

let ans = kmeans(data, 2, { initialization: centers });
console.log(ans);
/*
KMeansResult {
  clusters: [ 0, 0, 1, 1 ],
  centroids: 
   [ { centroid: [ 1, 1.5, 1 ], error: 0.25, size: 2 },
     { centroid: [ -1, -1, -1.25 ], error: 0.0625, size: 2 } ],
  converged: true,
  iterations: 1
}
*/

Authors

Sources

D. Arthur, S. Vassilvitskii, k-means++: The Advantages of Careful Seeding, in: Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 1027–1035. Link to article

License

MIT