JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 162888
  • Score
    100M100P100Q176008F
  • License MIT

Base class for regression modules

Package Exports

  • ml-regression-base
  • ml-regression-base/lib-esm/index.js
  • ml-regression-base/lib/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-regression-base) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

regression-base

NPM version build status Test coverage npm download

Base class for regression modules.
This package is for ml.js internal use.

Usage

You only have to implement the _predict method. It is always called with a number.

The model should be created in the constructor.

Optional methods that can be implemented: toString, toLaTeX.

import BaseRegression from 'ml-regression-base';

class MyRegression extends BaseRegression {
  constructor(factor) {
    super();
    this.factor = factor;
  }
  _predict(x) {
    return x * this.factor;
  }
  toString() {
    return `f(x) = x * ${this.factor}`;
  }
}

maybeToPrecision(value, digits)

Convenience method to transform numbers to readable strings.

If digits is not specified, "value.toString()" is used. Otherwise "value.toPrecision(digits)" is used.

This method can be used to implement toString() or toLaTeX().

checkArrayLength(x, y)

Convenience method to check if the input and output arrays passed to a regression constructor are effectively arrays with the same length.

License

MIT