JSPM

  • Created
  • Published
  • Downloads 1607
  • Score
    100M100P100Q127019F
  • License MIT

Fit spectra using gaussian or lorentzian

Package Exports

  • ml-spectra-fitting
  • ml-spectra-fitting/lib-esm/index.js
  • ml-spectra-fitting/lib/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-spectra-fitting) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

ml-spectra-fitting

NPM version build status npm download

This is a spectra fitting package to optimize the position (x), max intensity (y), full width at half maximum (FWHM = width) and the ratio of gaussian contribution (mu) if it's required. It supports three kind of shapes:

Name Equation
Gaussian
Lorentzian
Pseudo Voigt

where

It is a wrapper of ml-levenberg-marquardt

API Documentation

Installation

$ npm install ml-spectra-fitting

Example

import { optimize } from 'ml-spectra-fitting';
import { SpectrumGenerator } from 'spectrum-generator';

const generator = new SpectrumGenerator({
  nbPoints: 101,
  from: -1,
  to: 1,
});

// by default the kind of shape is gaussian;
generator.addPeak({ x: 0.5, y: 0.2 }, { fwhm: 0.2 });
generator.addPeak(
  { x: -0.5, y: 0.2 },
  {
    shape: {
      kind: 'lorentzian',
      fwhm: 0.1,
    },
  },
);

//points to fit {x, y};
let data = generator.getSpectrum();
console.log(JSON.stringify({ x: Array.from(data.x), y: Array.from(data.y) }));
//the approximate values to be optimized, It could coming from a peak picking with ml-gsd
let peaks = [
  {
    x: -0.5,
    y: 0.22,
    shape: {
      kind: 'gaussian',
      fwhm: 0.25,
    },
  },
  {
    x: 0.52,
    y: 0.18,
    shape: {
      kind: 'gaussian',
      fwhm: 0.18,
    },
  },
];

// the function receive an array of peak with {x, y, fwhm} as a guess
// and return a list of objects
let fittedParams = optimize(data, peaks, { shape: { kind: 'pseudoVoigt' } });

console.log(fittedParams);
const result = {
  error: 0.12361588652854476,
  iterations: 100,
  peaks: [
    {
      x: -0.5000014532421942,
      y: 0.19995307937326137,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.10007670374735196,
        mu: 0.004731136777288483,
      },
    },
    {
      x: 0.5001051783652894,
      y: 0.19960010175400406,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.19935932346969124,
        mu: 1,
      },
    },
  ],
};

For data with and combination of signals with shapes between gaussian and lorentzians, we could use the kind pseudovoigt to fit the data.

import { optimize } from 'ml-spectra-fitting';
import { SpectrumGenerator } from 'spectrum-generator';

const generator = new SpectrumGenerator({
  nbPoints: 101,
  from: -1,
  to: 1,
});

// by default the kind of shape is gaussian;
generator.addPeak({ x: 0.5, y: 0.2 }, { fwhm: 0.2 });
generator.addPeak(
  { x: -0.5, y: 0.2 },
  {
    shape: {
      kind: 'lorentzian',
      fwhm: 0.1,
    },
  },
);

//points to fit {x, y};
let data = generator.getSpectrum();
console.log(JSON.stringify({ x: Array.from(data.x), y: Array.from(data.y) }));
//the approximate values to be optimized, It could coming from a peak picking with ml-gsd
let peaks = [
  {
    x: -0.5,
    y: 0.22,
    shape: {
      kind: 'gaussian',
      fwhm: 0.25,
    },
  },
  {
    x: 0.52,
    y: 0.18,
    shape: {
      kind: 'gaussian',
      fwhm: 0.18,
    },
  },
];

// the function receive an array of peak with {x, y, fwhm} as a guess
// and return a list of objects
let fittedParams = optimize(data, peaks, { shape: { kind: 'pseudoVoigt' } });

console.log(fittedParams);
const result = {
  error: 0.12361588652854476,
  iterations: 100,
  peaks: [
    {
      x: -0.5000014532421942,
      y: 0.19995307937326137,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.10007670374735196,
        mu: 0.004731136777288483,
      },
    },
    {
      x: 0.5001051783652894,
      y: 0.19960010175400406,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.19935932346969124,
        mu: 1,
      },
    },
  ],
};

License

MIT