JSPM

newton-raphson-method

1.0.2
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 9316
  • Score
    100M100P100Q207747F
  • License MIT

Find zeros of a function using the Newton-Raphson method

Package Exports

  • newton-raphson-method

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (newton-raphson-method) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

newton-raphson-method

Find zeros of a function using Newton's Method

Build Status npm version Dependency Status js-semistandard-style

Introduction

The Newton-Raphson method uses the tangent of a curve to iteratively approximate a zero of a function, f(x). This yields the update:

x_{i + 1} = x_i -\frac{f(x_i)}{f'(x_i)}.

Example

Consider the zero of (x + 2) * (x - 1) at x = 1:

var nr = require('newton-raphson-method');

function f (x) { return (x - 1) * (x + 2); }
function fp (x) { return (x - 1) + (x + 2); }

// Using the derivative:
nr(f, fp, 2)
// => 1.0000000000000000 (6 iterations)

// Using a numerical derivative:
nr(f, 2)
// => 1.0000000000000000 (6 iterations)

Installation

$ npm install newton-raphson-method

API

require('newton-raphson-method')(f[, fp], x0[, options])

Given a real-valued function of one variable, iteratively improves and returns a guess of a zero.

Parameters:

  • f: The numerical function of one variable of which to compute the zero.
  • fp (optional): The first derivative of f. If not provided, is computed numerically using a fourth order central difference with step size h.
  • x0: A number representing the intial guess of the zero.
  • options (optional): An object permitting the following options:
    • tolerance (default: 1e-7): The tolerance by which convergence is measured. Convergence is met if |x[n+1] - x[n]| <= tolerance * |x[n+1]|.
    • epsilon (default: 2.220446049250313e-16 (double-precision epsilon)): A threshold against which the first derivative is tested. Algorithm fails if |y'| < epsilon * |y|.
    • maxIterations (default: 20): Maximum permitted iterations.
    • h (default: 1e-4): Step size for numerical differentiation.
    • verbose (default: false): Output additional information about guesses, convergence, and failure.

Returns: If convergence is achieved, returns an approximation of the zero. If the algorithm fails, returns false.

See Also

  • modified-newton-raphson: A simple modification of Newton-Raphson that may exhibit improved convergence.
  • newton-raphson: A similar and lovely implementation that differs (only?) in requiring a first derivative.

License

© 2016 Scijs Authors. MIT License.

Authors

Ricky Reusser