Package Exports
- pii-filter
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (pii-filter) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Filter Node Module
A library for detecting, parsing, and removing personally identifiable information from strings and objects.

Scenarios
We hope that this software can be useful in some of the following scenarios:
- privacy, security, fraud-detection, and data-auditing
- anonymizing data for research, marketing and machine learning
- accessibility and online guidance
- word tagging and word spotting
- designing chatbots
Languages
pii-filter currently supports the following languages and PII:
- Dutch
- First Names
- Family Names
- Pet Names
- Medicine Names
- Phone Numbers
- Email Addresses
- Dates
Installing
You can add the pii-filter npm package to your project by running:
npm install --save-dev pii-filter
Documentation
Examples
Sanitizing strings:
import * as pf from 'pii-filter';
const pii_filter = pf.make_pii_classifier(pf.languages.nl.make_lm());
const raw_str = 'Hallo Johan, mijn 06 is 0612345678, tot morgen.';
const sanitized_str = pii_filter.sanitize_str(raw_str, true);
console.log(sanitized_str);
// output:
'Hallo {first_name}, mijn 06 is {phone_number}, tot morgen.'Sanitizing objects:
import * as pf from 'pii-filter';
const pii_filter = pf.make_pii_classifier(pf.languages.nl.make_lm());
const obj =
{
message: 'Wilma de Vries, 20 november 1964',
detail: 'Werking Paracetamol bij gebruik medicatie'
};
const sanitized_obj = pii_filter.sanitize_obj(obj, true, false);
console.dir(sanitized_obj);
// output:
{
message: '{first_name} {family_name}, {date}',
detail: 'Werking {medicine_name} bij gebruik medicatie'
}Parsing PII:
import * as pf from 'pii-filter';
const pii_filter = pf.make_pii_classifier(pf.languages.nl.make_lm());
const raw_str = 'Hallo Johan, mijn e-mail is test@test.com en mijn nummer is 0612345678, tot dan.';
const results = pii_filter.classify(raw_str);
for (let pii of results.pii)
console.dir(pii);
// output:
{
value: 'Johan',
type: 'first_name',
confidence: 0.755,
severity: 0.4539742200500001,
start_pos: 6,
end_pos: 11
}
{
value: 'test@test.com',
type: 'email_address',
confidence: 1,
severity: 0.2,
start_pos: 28,
end_pos: 41
}
{
value: '0612345678',
type: 'phone_number',
confidence: 0.8512500000000001,
severity: 0.35,
start_pos: 60,
end_pos: 70
} Main repository
For more information and access to used the datasets check out the main repository.