JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 242
  • Score
    100M100P100Q69389F
  • License MIT

DBSCAN implementation (density based spatial clustering) for javascript. Works in node and browser

Package Exports

  • sdbscan

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (sdbscan) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

sdbscan

Super fast density based spatial clustering DBSCAN implementation for unidimiensional and multidimensional data. Works on nodejs and browser.

Installation

npm install sdbscan

Usage

NodeJS

const sdbscan = require("sdbscan");

var data = [0, 1, 100, 101, 2, 102, 3, 104, 4, 103, 105, 5];
var res = sdbscan(data,2,3);

Browser

<!doctype html>
<html>
<head>
    <script src="sdbscan.js"></script>
</head>
<body>
    <script>
        var data = [0,1,100,101,2,102,3,104,4,103,105,5];
        var res = sdbscan(data,2,3);

        console.log(data);
        console.log(res);
    </script>
</body>
</html>

Results

{
    "noise": [],
    "clusters": [
    {
      "id": 0,
      "data": [5,4,3,2,1,0]
    },
    {
      "id": 1,
      "data": [105,103,104,102,101,100]
    }
  ]
}

API

sdbscan(data,epsilon,min)

Calculates unidimiensional and multidimensional dbscan clustering on data. Parameters are:

  • data Unidimiensional or multidimensional array of values to be clustered. for unidimiensional data, takes the form of a simple array [1,2,3.....,n]. For multidimensional data, takes a NxM array [[1,2],[2,3]....[n,m]]
  • epsilon Maximum distance for two points to be considered in the same region.
  • min Minimal region size. If a region for a point is lesser than min, this point will be considered as noise (cannot be included in any group).

The function will return an object with the following data:

  • noise Points that cannot be added to any cluster.
  • clusters An array of clusters, with an ID and the data points belonging to it.