JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 279
  • Score
    100M100P100Q86955F
  • License MIT

High performance set theory - functional utilities which operate on arbitrary input sets.

Package Exports

  • set-utilities
  • set-utilities/dist/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (set-utilities) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

set utilities

NPM Version MIT License FOSSA Status

Build & Test Job Scale Test Job Coverage

Install Size Zipped Size Language

High performance set theory.

This library is a collection of functional utilities from set theory, each of which operate on an arbitrary number of input sets.

Each function accepts variable arguments and operates with the principals of immutability: none of the input sets are modified in the process of calculation.

Set Operations:

difference: A ∖ B

The difference of sets contains all the elements of the first set, not contained in other sets.

difference visual

import { difference } from 'set-utilities';

const differenceAB = difference(setA, setB);
const differenceABC = difference(setA, setB, setC);

intersection: A ∩ B

The intersection of sets contains all the elements each contained in every set.

intersection visual

import { intersection } from 'set-utilities';

const intersectionAB = intersection(setA, setB);
const intersectionABC = intersection(setA, setB, setC);

union: A ∪ B

The union of sets contains all the elements each contained in any set.

union visual

import { union } from 'set-utilities';

const unionAB = union(setA, setB);
const unionABC = union(setA, setB, setC);

symmetric difference (xor): A ∆ B

The symmetric difference of sets contains only the unique elements of each set.

xor visual

import { xor } from 'set-utilities';

const xorAB = xor(setA, setB);
const xorABC = xor(setA, setB, setC);

Set Comparisons:

equivalence: A ∼ B

Sets are equivalent if they have the same cardinality, and there is a bijection between the elements contained in each set.

equivalence visual

import { equivalence } from 'set-utilities';

const isEquivalentAB = equivalence(setA, setB);
const isEquivalentABC = equivalence(setA, setB, setC);

disjoint: A ∩ B = ∅

Sets are disjoint if they have no elements in common.

disjoint visual

import { disjoint } from 'set-utilities';

const isDisjointAB = disjoint(setA, setB);
const isDisjointABC = disjoint(setA, setB, setC);

pairwise disjoint: A ∩ B ∩ C = ∅

A family of sets are pairwise disjoint if none of the sets share any elements in common.

pairwise disjoint visual

import { pairwiseDisjoint } from 'set-utilities';

const isPairwiseDisjointAB = pairwiseDisjoint(setA, setB);
const isPairwiseDisjointABC = pairwiseDisjoint(setA, setB, setC);

subset: A ⊆ B

A set is a subset of another if all of its elements are contained in the other set.

subset visual

import { subset } from 'set-utilities';

const isSubsetAB = subset(setA, setB);
const isSubsetABC = subset(setA, setB, setC);

proper subset: A ⊂ B

A set is a proper subset of another if all of its elements are contained in the other set, and it has a lower cardinality than the other set.

proper subset visual

import { properSubset } from 'set-utilities';

const isProperSubsetAB = properSubset(setA, setB);
const isProperSubsetABC = properSubset(setA, setB, setC);

superset: A ⊇ B

A set is a superset of another if it contains all the elements contained in the other set.

superset visual

import { superset } from 'set-utilities';

const isSupersetAB = superset(setA, setB);
const isSupersetABC = superset(setA, setB, setC);

proper superset: A ⊃ B

A set is a proper superset of another if it contains all the elements contained in the other set, and it has a greater cardinality than the other set.

proper superset visual

import { properSuperset } from 'set-utilities';

const isProperSupersetAB = properSuperset(setA, setB);
const isProperSupersetABC = properSuperset(setA, setB, setC);

Set Ordering:

sort: A ⇅

An immutable sorting operation for sets.

sort visual

import { sort } from 'set-utilities';

const sortedA = sort(setA);
const sortedB = sort(setB, compareFunction);