JSPM

src-mcp

1.0.3
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 7
  • Score
    100M100P100Q69763F
  • License MIT

MCP server for semantic code search and codebase analysis โ€” Treesitter parsing, AST extraction, and embedding-based indexing for any LLM that supports MCP

Package Exports

  • src-mcp

Readme

SRC (Structured Repo Context)

Transform your codebase into AI-ready context โ€” MCP server + CLI for semantic code search that makes your code truly understandable for AI assistants

SRC is both:

  • ๐Ÿ”Œ An MCP Server โ€” Integrates with Claude Desktop, Cursor, and any MCP-compatible AI assistant
  • ๐Ÿ’ป A Standalone CLI โ€” Use directly from your terminal for indexing and searching

CI codecov npm version npm downloads License: MIT MCP TypeScript Ollama


Table of Contents

  1. Overview
  2. Quick Start
  3. Installation
  4. MCP Tools Reference
  5. CLI Reference
  6. Configuration
  7. Supported Languages
  8. How It Works
  9. Comparison
  10. Troubleshooting
  11. Links

Overview

The Problem

AI assistants struggle to understand your entire codebase:

  • They only see small snippets of code at a time
  • Manual copy-pasting of context is tedious and error-prone
  • Keyword search misses semantic relationships between code
  • Code changes get lost in conversation history

The Solution

SRC indexes your codebase into semantic, searchable chunks that LLMs actually understand:

Feature Description
Hybrid Search Vector + BM25 + RRF fusion for optimal results
Call Graph Shows who calls what and what calls who
Cross-file Context Resolves imports and path aliases automatically
Incremental Updates SHA-256 hash detection for fast updates
50+ Languages 18 with full AST support via Tree-sitter

Use Cases

Scenario Example Query
Code Review "Show me all error handling in the payment module"
Debugging "Find where user sessions are created"
Documentation "Explain the authentication flow"
Refactoring "List all deprecated API usages"
Onboarding "How does the routing system work?"
Security Audit "Find all database query locations"

Quick Start

1. Install Ollama

SRC requires Ollama for embeddings:

# Install from https://ollama.com, then:
ollama pull nomic-embed-text

2. Install SRC

Global installation:

npm install -g src-mcp

Or use npx:

npx -y src-mcp serve

3. Use as MCP Server (with AI Assistants)

Add to your MCP client configuration (e.g., Claude Desktop):

With global installation:

{
  "mcpServers": {
    "src-mcp": {
      "command": "src-mcp",
      "args": ["serve"]
    }
  }
}

With npx:

{
  "mcpServers": {
    "src-mcp": {
      "command": "npx",
      "args": ["-y", "src-mcp", "serve"]
    }
  }
}

The server automatically indexes the current directory if no index exists, and watches for file changes.

Then in your AI assistant:

"Search for authentication logic"
"Find error handling code with limit 20"
"Search for UserService in fts mode"

4. Use as CLI (Standalone)

# Start server (auto-indexes if needed)
src-mcp serve

# Search for code
src-mcp search_code --query "authentication"
src-mcp search_code --query "error handling" --limit 20
src-mcp search_code --query "UserService" --mode fts

# Check index status
src-mcp get_index_status

Key Arguments

Tool Argument Default Description
search_code --limit 10 Max results
search_code --mode hybrid hybrid / vector / fts
index_codebase --concurrency 4 Parallel workers
index_codebase --force false Re-index if exists

Installation

Global Installation

npm install -g src-mcp

Then use directly:

src-mcp serve
src-mcp search_code --query "authentication"
src-mcp help

npx (No Installation)

npx -y src-mcp serve
npx -y src-mcp search_code --query "authentication"

Local Development

git clone https://github.com/kvnpetit/structured-repo-context-mcp.git
cd structured-repo-context-mcp
npm install
npm run dev

MCP Tools Reference

SRC exposes 5 MCP tools that AI assistants can call:

index_codebase

Index a directory with semantic chunking, AST enrichment, and embeddings.

Parameter Type Required Default Description
directory string No . Path to directory to index
force boolean No false Force re-indexing if index exists
exclude string[] No [] Additional glob patterns to exclude
concurrency number No 4 Parallel file processing workers

Example:

"Index the project at /home/user/myapp with concurrency 8"

Returns:

{
  "filesIndexed": 150,
  "chunksCreated": 892,
  "languages": { "typescript": 500, "javascript": 200, "json": 192 }
}

search_code

Hybrid search with vector similarity, BM25 keyword matching, and RRF fusion.

Parameter Type Required Default Description
query string Yes โ€” Natural language search query
directory string No . Path to indexed directory
limit number No 10 Maximum results to return
threshold number No โ€” Distance threshold (0-2, vector mode only)
mode enum No hybrid Search mode: hybrid, vector, or fts
includeCallContext boolean No true Include caller/callee information

Search Modes:

Mode Description Best For
hybrid Vector + BM25 + RRF fusion General queries (default)
vector Semantic similarity only Conceptual searches
fts Full-text keyword only Exact identifiers

Example:

"Search for 'user authentication' with limit 20"

Returns:

{
  "results": [
    {
      "content": "export async function authenticateUser(credentials)...",
      "filePath": "src/auth/login.ts",
      "startLine": 45,
      "endLine": 78,
      "symbolName": "authenticateUser",
      "symbolType": "function",
      "score": 0.92,
      "callers": [{ "name": "handleLogin", "filePath": "src/routes/auth.ts", "line": 23 }],
      "callees": [{ "name": "validatePassword", "filePath": "src/auth/crypto.ts", "line": 12 }]
    }
  ]
}

update_index

Incrementally update the index by detecting changed files via SHA-256 hash comparison.

Parameter Type Required Default Description
directory string No . Path to indexed directory
dryRun boolean No false Preview changes without updating
force boolean No false Force re-index all files

Example:

"Update the index with dry run to see what changed"

Returns:

{
  "added": ["src/new-file.ts"],
  "modified": ["src/auth/login.ts"],
  "deleted": ["src/old-file.ts"],
  "unchanged": 148
}

get_index_status

Get status of the embedding index for a directory.

Parameter Type Required Default Description
directory string No . Path to directory

Example:

"Get the index status for current directory"

Returns:

{
  "exists": true,
  "indexPath": "/home/user/myapp/.src-index",
  "totalFiles": 150,
  "totalChunks": 892,
  "languages": { "typescript": 500, "javascript": 200 }
}

get_server_info

Get server version, capabilities, and configuration.

Parameter Type Required Default Description
format enum No text Output format: text or json

Returns:

{
  "name": "src-mcp",
  "version": "1.0.0",
  "capabilities": ["indexing", "search", "incremental-update"]
}

CLI Reference

Every MCP tool is also a CLI command. You can use SRC from your terminal without any AI assistant.

General Usage

src-mcp <command> [options]
src-mcp help                    # Show all commands
src-mcp <command> --help        # Show command options

Or with npx:

npx -y src-mcp <command> [options]

Commands

# Start MCP server (auto-indexes if needed, watches for changes)
src-mcp serve
src-mcp serve --no-watch        # Disable file watcher

# Index a codebase manually
src-mcp index_codebase
src-mcp index_codebase --concurrency 8
src-mcp index_codebase --force   # Re-index even if index exists

# Search indexed code
src-mcp search_code --query "authentication"
src-mcp search_code --query "error handling" --limit 20 --mode hybrid
src-mcp search_code --query "UserService" --mode fts  # Exact keyword search

# Update index incrementally
src-mcp update_index
src-mcp update_index --dryRun   # Preview changes only

# Check index status
src-mcp get_index_status

# Server information
src-mcp get_server_info --format json

Configuration

Environment Variables

All settings can be configured via environment variables:

Variable Description Default
OLLAMA_BASE_URL Ollama API endpoint http://localhost:11434
EMBEDDING_MODEL Model for embeddings nomic-embed-text
EMBEDDING_DIMENSIONS Vector dimensions 768
CHUNK_SIZE Characters per chunk 1000
CHUNK_OVERLAP Overlap between chunks 200
EMBEDDING_BATCH_SIZE Batch size for embedding 10
LOG_LEVEL Log verbosity info

Example:

OLLAMA_BASE_URL=http://192.168.1.100:11434 src-mcp serve

MCP Client Configuration

Claude Desktop (claude_desktop_config.json):

With global installation:

{
  "mcpServers": {
    "src-mcp": {
      "command": "src-mcp",
      "args": ["serve"]
    }
  }
}

With npx:

{
  "mcpServers": {
    "src-mcp": {
      "command": "npx",
      "args": ["-y", "src-mcp", "serve"]
    }
  }
}

With environment variables:

{
  "mcpServers": {
    "src-mcp": {
      "command": "src-mcp",
      "args": ["serve"],
      "env": {
        "OLLAMA_BASE_URL": "http://192.168.1.100:11434"
      }
    }
  }
}

Index Storage

Indexes are stored in .src-index/ directory within each indexed project:

my-project/
โ”œโ”€โ”€ src/
โ”œโ”€โ”€ .src-index/              # Created by SRC
โ”‚   โ”œโ”€โ”€ lancedb/             # Vector database
โ”‚   โ”œโ”€โ”€ callgraph.json       # Call graph cache
โ”‚   โ””โ”€โ”€ .src-index-hashes.json  # File hash cache
โ””โ”€โ”€ ...

Add .src-index/ to your .gitignore:

.src-index/

Supported Languages

Full AST Support (18 languages)

These languages have complete support: symbol extraction, semantic chunking at function/class boundaries, call graph analysis, and import resolution.

Category Language Extensions
Web JavaScript .js .jsx .mjs .cjs
TypeScript .ts
TSX .tsx
HTML .html .htm
Svelte .svelte
Systems C .c .h
C++ .cpp .hpp .cc .cxx
Rust .rs
Go .go
Enterprise Java .java
C# .cs
Kotlin .kt .kts
Scala .scala .sc
Scripting Python .py .pyi .pyw
Ruby .rb .rake .gemspec
PHP .php .phtml
Functional OCaml .ml .mli
Swift .swift

LangChain Fallback (16 languages)

These languages use intelligent text splitting with language-aware rules:

Language Extensions
Markdown .md .mdx
LaTeX .tex .latex
reStructuredText .rst
Solidity .sol
Protocol Buffers .proto
Lua .lua
Haskell .hs .lhs
Elixir .ex .exs
PowerShell .ps1 .psm1
Perl .pl .pm
Cobol .cob .cbl
Visual Basic .vb .vbs
FORTRAN .f .f90 .f95
Assembly .asm .s

Generic Support (30+ file types)

All other text files use configurable chunking:

Category Extensions
Config .json .yaml .yml .toml .ini .env .xml
Shell .sh .bash .zsh .fish .bat .cmd
Styles .css .scss .sass .less
Data .sql .graphql .gql
DevOps Dockerfile Makefile .tf .hcl
Other .zig .nim .dart .vue .elm .clj

Auto-excluded Files

Binary files and lock files are automatically excluded:

  • Binaries: .exe .dll .so .png .jpg .mp3 .zip .wasm
  • Lock files: package-lock.json yarn.lock pnpm-lock.yaml
  • Build outputs: .pyc .class .o dist/ node_modules/

How It Works

Indexing Pipeline

Source Files โ†’ Semantic Chunking โ†’ AST Enrichment โ†’ Cross-file Context โ†’ Embeddings โ†’ LanceDB
                    โ†“                    โ†“                  โ†“                 โ†“
              Split at symbol      Extract symbols    Resolve imports    nomic-embed-text
              boundaries           and metadata       and aliases        768 dimensions

Steps:

  1. Scan โ€” Find all supported files (respects .gitignore)
  2. Chunk โ€” Split code at function/class boundaries (1000 chars, 200 overlap)
  3. Enrich โ€” Add AST metadata (symbols, imports, exports)
  4. Resolve โ€” Resolve cross-file imports and TypeScript path aliases
  5. Embed โ€” Generate vectors via Ollama (nomic-embed-text)
  6. Store โ€” Save to LanceDB with vector and full-text indices
  7. Cache โ€” Store file hashes for incremental updates

Search Pipeline

Query โ†’ Embed Query โ†’ Vector Search โ”€โ”
                                     โ”œโ†’ RRF Fusion โ†’ Add Call Context โ†’ Results
Query โ†’ Tokenize โ”€โ”€โ”€โ†’ BM25 Search โ”€โ”€โ”€โ”˜

Steps:

  1. Embed โ€” Convert query to vector using same model
  2. Vector Search โ€” Find semantically similar chunks (cosine similarity)
  3. BM25 Search โ€” Find keyword matches (term frequency)
  4. RRF Fusion โ€” Combine rankings with Reciprocal Rank Fusion (k=60)
  5. Call Context โ€” Add caller/callee information from call graph
  6. Return โ€” Ranked results with full context

Technical Specifications

Component Specification
Embedding Model nomic-embed-text (137M params)
Vector Dimensions 768
Chunk Size 1000 characters
Chunk Overlap 200 characters
Batch Size 10 embeddings per request
RRF Constant k=60
Vector Database LanceDB (embedded)

Comparison

SRC vs Basic Code Search MCPs

Feature SRC Basic MCPs
Search Method Hybrid (Vector + BM25 + RRF) Keyword only or basic embedding
Call Graph Full caller/callee context None
Cross-file Context Resolves imports & path aliases None
Incremental Updates SHA-256 hash detection Full re-index required
AST Languages 18 with Tree-sitter WASM Few or none
Total Languages 50+ Limited

Key Advantages

  1. Hybrid Search โ€” Combines semantic understanding with keyword precision
  2. Call Graph โ€” Understand code relationships, not just content
  3. Cross-file Resolution โ€” Follows imports to provide complete context
  4. Incremental Updates โ€” Only re-index what changed
  5. Semantic Chunking โ€” Splits at symbol boundaries, not arbitrary lines

Troubleshooting

Ollama Connection Failed

Error: Ollama is not available

Solution:

  1. Ensure Ollama is running: ollama serve
  2. Check the URL: curl http://localhost:11434/api/tags
  3. If using remote Ollama: set OLLAMA_BASE_URL

Model Not Found

Error: model 'nomic-embed-text' not found

Solution:

ollama pull nomic-embed-text

Index Already Exists

Error: Index already exists. Use force=true to re-index.

Solution:

  • Use force: true parameter to re-index
  • Or use update_index for incremental updates

No Results Found

Possible causes:

  1. Query too specific โ€” try broader terms
  2. Wrong directory โ€” check directory parameter
  3. Files excluded โ€” check .gitignore patterns

Slow Indexing

Solutions:

  1. Increase concurrency: --concurrency 8
  2. Exclude large directories: --exclude node_modules --exclude dist
  3. Use faster storage (SSD)

Project

External


License

MIT ยฉ 2026 kvnpetit


Ready to supercharge your AI coding experience?

npm install -g src-mcp && src-mcp serve
# or
npx -y src-mcp serve

Report Bug ยท Request Feature