JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 204
  • Score
    100M100P100Q83290F
  • License MIT

Get string similarity in JavaScript or TypeScript

Package Exports

  • string-metric
  • string-metric/dist/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (string-metric) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

String Metric

Build Status Coverage Status npm npm

A library implementing different string similarity and distance measures, and Implement by TypeScript. Also, you can use in JavaScript.

Algorithm reference java-string-similarity

Install

npm install string-metric

Progress

Algorithm Complete?
Jaro-Winkler Yes
Levenshtein Yes
Normalized-Levenshtein Yes
Weighted-Levenshtein Yes
Damerau Yes
Optimal-String-Alignment Yes
Longest-Common-Subsequence Yes
Metric-Longest-Common-Subsequence Yes
N-Gram Yes
Q-Gram No
Shingle (n-gram) based algorithms No
Cosine similarity No
Jaccard index No
Sorensen-Dice coefficient No
Ratcliff-Obershelp No

Jaro-Winkler

For more specs, please go to tests/JaroWinkler.spec.ts in the repository.

const instance = new JaroWinkler();

const s1 = 'My string';
const s2 = 'My string';
instance.similarity(s1, s2); // 1

const s1 = 'My string';
const s2 = 'My tsring';
instance.similarity(s1, s2); // 0.974074

const s1 = 'My string';
const s2 = 'My ntrisg';
instance.similarity(s1, s2); // 0.896296

Levenshtein

For more specs, please go to tests/Levenshtein.spec.ts in the repository.

const instance = new Levenshtein();

const s1 = 'My string';
const s2 = 'My string';
instance.distance(s1, s2); // 0

const s1 = 'My string';
const s2 = 'My tring';
instance.distance(s1, s2); // 1

const s1 = 'My string';
const s2 = 'M string2';
instance.distance(s1, s2); // 2

Normalized-Levenshtein

For more specs, please go to tests/NormalizedLevenshtein.spec.ts in the repository.

const instance = new NormalizedLevenshtein();

Weighted-Levenshtein

For more specs, please go to tests/WeightedLevenshtein.spec.ts in the repository.

const instance = new WeightedLevenshtein();

Damerau

For more specs, please go to tests/Damerau.spec.ts in the repository.

const instance = new Damerau();

const s1 = 'ABCDEF';
const s2 = 'ABDCEF';
instance.distance(s1, s2); // 1

const s1 = 'ABCDEF';
const s2 = 'BACDFE';
instance.distance(s1, s2); // 2

const s1 = 'ABCDEF';
const s2 = 'ABCDE';
instance.distance(s1, s2); // 1

Optimal-String-Alignment

For more specs, please go to tests/OptimalStringAlignment.spec.ts in the repository.

const instance = new OptimalStringAlignment();

const s1 = 'ABDCEF';
const s2 = 'ADCEF';
instance.distance(s1, s2); // 1

const s1 = 'BAC';
const s2 = 'CAB';
instance.distance(s1, s2); // 2

const s1 = 'CA';
const s2 = 'ABC';
instance.distance(s1, s2); // 3

Longest-Common-Subsequence

For more specs, please go to tests/LongestCommonSubsequence.spec.ts in the repository.

const instance = new LongestCommonSubsequence();

const s1 = 'AGCAT';
const s2 = 'GAC';
instance.distance(s1, s2); // 4

const s1 = 'AGCAT';
const s2 = 'AGCT';
instance.distance(s1, s2); // 1

Metric-Longest-Common-Subsequence

For more specs, please go to tests/MetricLCS.spec.ts in the repository.

const instance = new MetricLCS();

N-Gram

For more specs, please go to tests/NGram.spec.ts in the repository.

const instance = new NGram();

const s1 = 'SIJK';
const s2 = 'SIJK';
instance.distance(s1, s2); // 0

const s0 = 'ABABABAB';
const s1 = 'ABCABCABCABC';
const s2 = 'POIULKJH';
instance.distance(s0, s1) < instance.distance(s0, s2); // true