Package Exports
- triply
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (triply) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Triply, a triply-linked list lib
Yet another data structure for creating trees.
Install
npm i triply
Usage
const Triply = require("../lib/triply").Triply;
// NOTE only objects are valid entries
// which will be formatted using reserved keys.
// Here we use `data` to insert a number
const node = new Triply({data:1})
.push({data:2}) // just append a sibling, the insertion point is moved to the new node
.open({data:3}) // make the insertion point a branch and append a new child
.close() // try to move the insertion point to the parent
.push({data:4}) // append another sibling
.previous() // try to move the insertion point back along the traversal path (the branch containing `data:2`)
.open({data:5}) // append another child
.push({data:6}); // append another sibling to that child
// traverse the tree (lazy iterator)
// we have to keep track of branch 'closers' (compare for example with XML closing tags)
for(let x of node.traverse()) console.log("x",Triply.isClose(x) ? "closes: " + Triply.link(x).data : x.data);
License
API documentation
About
Triply is a way to create in-memory trees with some very interesting performance characteristics:
- Fast traversal in 2 directions
- Fast appendChild, insertBefore, insertAfter, removeChild
- Fast access to siblings
- Fast access to the parent at the first or last child
Updates require writes to at most 4 pointers (5 when expanding or collapsing branches).
Use Triply to create trees that can be modified with some ease.
Triply Pointer Rules
- 1 = depth-first traversal
- 2 = reversed traversal
- 3 = open/close link
Traversal directions (invert directions and arrows for reversed traversal):
- UP = BRANCH -> LEAF or BRANCH
- DOWN = BRANCH or LEAF -> CLOSE
- SAME = LEAF -> LEAF
Tree Diagrams
L
1 // 2 1 \\ 2
B 3-><-3 /B
1 // 2 1 \\ 2
B 3---> <---3 /B 1 --> <-- 2 B ~
Append a child at tier 1 (or a sibling at tier 2):
L 1 --> <-- 2 L
1 // 2 1 \\ 2
B 3---> <---3 /B
1 // 2 1 \\ 2
B 3---> <---3 /B 1 --> <-- 2 B ~
Append a child at tier 0 (or a sibling at tier 1):
L 1 --> <-- 2 L L
1 // 2 1 \\ 2 1 // 2 1 \\ 2
B 3---> <---3 /B 1--> <-- 2 B 3-><-3 /B
1 // 2 1 \\ 2
B 3---> <---3 /B 1 --> <-- 2 B ~
Access logic
- firstChild: follow 1 from BRANCH
- lastChild: follow 3 to find CLOSE and then 2
- nextSibling: follow 1 from LEAF or 3 + 1 from BRANCH
- previousSibling: follow 2, if found CLOSE follow 3
- parent (O[no of siblings]): follow 2 from firstSibling or 1 + 3 from lastSibling
- firstChildTest: child -> 2 === BRANCH
- lastChildTest: child -> 1 === CLOSE
NOTE: Accessing the parent is only relevant for insertBefore when it's the first child.