Package Exports
- unimodaly-ingest
- unimodaly-ingest/src/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (unimodaly-ingest) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Unimodaly Ingest
A unified data-ingestion CLI that auto-detects and converts text, image, audio and tabular sources into standardized training datasets with schema validation, sampling, and augmentation capabilities.
Features
- Multi-modal Data Detection: Automatically detects and processes text, image, audio, and tabular data formats
- Schema Validation: Validates output datasets against custom or default schemas
- Data Augmentation: Built-in augmentation techniques for each data type
- Flexible Sampling: Control dataset size with sampling ratios
- Multiple Output Formats: Export to JSON, JSONL, or CSV formats
- Batch Processing: Efficient processing of large datasets
- Configuration Management: Customizable processing pipelines
- Comprehensive Metadata: Rich metadata and feature extraction for each data type
Installation
npm install -g unimodaly-ingestQuick Start
# Process all data in a directory
unimodaly-ingest ingest ./data --output ./processed
# Process specific data types with augmentation
unimodaly-ingest ingest ./images --type image --augment --output ./processed
# Sample 50% of data and export to CSV
unimodaly-ingest ingest ./data --sample 0.5 --format csv
# Initialize configuration
unimodaly-ingest config --initSupported Data Types
Text Files
.txt,.md,.json,.xml,.html- Encoding detection and validation
- Language detection
- Text augmentation (synonym replacement, random operations)
Image Files
.jpg,.jpeg,.png,.gif,.webp,.svg,.bmp,.tiff- Metadata extraction (dimensions, color space, etc.)
- Feature extraction (intensity statistics, aspect ratio)
- Image augmentation (rotation, brightness, contrast, flipping)
Audio Files
.mp3,.wav,.flac,.ogg,.m4a,.aac- Audio metadata extraction
- Duration, sample rate, channel analysis
- Audio augmentation capabilities
Tabular Data
.csv,.tsv,.xlsx,.json- Schema inference
- Statistical analysis
- Data type detection
- Duplicate and null value analysis
Commands
ingest
Main command for processing data sources.
unimodaly-ingest ingest <input> [options]Options:
-o, --output <path>- Output directory (default: ./output)-f, --format <format>- Output format: json, jsonl, csv (default: json)-s, --sample <ratio>- Sampling ratio 0-1 (default: 1.0)-a, --augment- Enable data augmentation--schema <path>- Custom schema validation file--config <path>- Configuration file path-v, --verbose- Verbose output-t, --type <types...>- Specific data types: text, image, audio, tabular--batch-size <size>- Batch processing size (default: 100)
config
Manage configuration settings.
unimodaly-ingest config [options]Options:
--init- Initialize default configuration--show- Show current configuration--set <key=value>- Set configuration value
validate
Validate dataset against schema.
unimodaly-ingest validate <dataset> [options]Options:
--schema <path>- Schema file path
Configuration
Initialize a configuration file to customize processing behavior:
unimodaly-ingest config --initThis creates unimodaly.config.json with settings for:
- Data type specific processing options
- Augmentation parameters
- Output formats and compression
- Performance settings
- Schema validation rules
Example configuration:
{
"text": {
"encoding": "utf8",
"maxSize": "10MB",
"augmentation": {
"enabled": false,
"synonymReplacement": 0.1,
"randomInsertion": 0.1
}
},
"image": {
"maxSize": "50MB",
"augmentation": {
"enabled": false,
"rotation": 15,
"brightness": 0.2,
"flip": true
}
}
}Output Format
The CLI generates standardized datasets with rich metadata:
[
{
"type": "text",
"source": "/path/to/file.txt",
"timestamp": "2025-01-27T10:30:00.000Z",
"content": "processed content...",
"metadata": {
"originalLength": 1500,
"fileSize": 1024,
"lines": 25,
"words": 200
},
"features": {
"wordCount": 200,
"sentenceCount": 12,
"language": "en"
}
}
]Schema Validation
Define custom schemas for validation:
{
"type": "array",
"items": {
"type": "object",
"required": ["type", "source", "content"],
"properties": {
"type": {
"type": "string",
"enum": ["text", "image", "audio", "tabular"]
},
"source": {
"type": "string"
},
"content": {
"type": ["string", "object"]
}
}
}
}Examples
Process Mixed Media Directory
unimodaly-ingest ingest ./media_folder \
--output ./datasets \
--format json \
--augment \
--sample 0.8 \
--verboseText-Only Processing with Custom Schema
unimodaly-ingest ingest ./documents \
--type text \
--schema ./text_schema.json \
--output ./text_dataset \
--format jsonlImage Dataset with Augmentation
unimodaly-ingest ingest ./images \
--type image \
--augment \
--batch-size 50 \
--output ./image_datasetLicense
MIT