JSPM

wink-embeddings-small-en-50d

0.0.3
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 9
  • Score
    100M100P100Q43708F
  • License MIT

Small English 50-dimensional word-embedding dataset compatible with wink-nlp.

Package Exports

  • wink-embeddings-small-en-50d
  • wink-embeddings-small-en-50d/dist/src/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (wink-embeddings-small-en-50d) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

wink-embeddings-small-en-50d

npm version

Small English 50-dimension word-embedding dataset compatible with wink-nlp.

Package size: ≤ 10 MB
Vocabulary: ≈ 5 k–10 k most-common English words (you can regenerate with any size you like).


Installation

npm install wink-embeddings-small-en-50d

Usage

import winkNLP from 'wink-nlp';
import model from 'wink-eng-lite-web-model';
import embeddings from 'wink-embeddings-small-en-50d';

const nlp = winkNLP(model);

nlp.readDoc('hello world').tokens().each((t) => {
  const word = t.out();
  const vector = embeddings[word];
  console.log(word, vector);
});

Each vector is an array of 50 floats and can be used with cosine similarity, etc.

API

import embeddings from 'wink-embeddings-small-en-50d'

Returns a plain object mapping strings → number[50].

interface Vector extends ReadonlyArray<number> { length: 50; }
interface Embeddings { [word: string]: Vector }

Regenerating / Updating the Dataset

A conversion script is provided to build your own subset from any GloVe 50-dimension file.

# Example: download the GloVe 6B 50d file
curl -L https://nlp.stanford.edu/data/glove.6B.zip -o glove.zip
unzip glove.zip glove.6B.50d.txt

# Convert the first 10 000 lines → src/embeddings.json
npm run convert:glove -- ./glove.6B.50d.txt src/embeddings.json 10000

Commit the new embeddings.json, rebuild, and publish.

Development

npm install
npm test
npm run build

Testing

The test-suite validates that:

  1. All keys are strings.
  2. Every vector has length 50 and all elements are numbers.
npm test

Publishing

npm version patch   # or minor/major
npm publish --access public
  1. 👉 Need to clean and normalize text before embedding it?
    Check out text-prep-lite

  2. 👉 Need a simple and robust PDF text extraction utility with an quality interface? Check out [pdf-worker-package]https://www.npmjs.com/package/pdf-worker-package


© 2025 Cavani21/TheGreatBey – MIT License