Package Exports
- wink-embeddings-small-en-50d
- wink-embeddings-small-en-50d/dist/src/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (wink-embeddings-small-en-50d) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
wink-embeddings-small-en-50d
Small English 50-dimension word-embedding dataset compatible with wink-nlp.
Package size: ≤ 10 MB
Vocabulary: ≈ 5 k–10 k most-common English words (you can regenerate with any size you like).
Installation
npm install wink-embeddings-small-en-50dUsage
import winkNLP from 'wink-nlp';
import model from 'wink-eng-lite-web-model';
import embeddings from 'wink-embeddings-small-en-50d';
const nlp = winkNLP(model);
nlp.readDoc('hello world').tokens().each((t) => {
const word = t.out();
const vector = embeddings[word];
console.log(word, vector);
});Each vector is an array of 50 floats and can be used with cosine similarity, etc.
API
import embeddings from 'wink-embeddings-small-en-50d'
Returns a plain object mapping strings → number[50].
interface Vector extends ReadonlyArray<number> { length: 50; }
interface Embeddings { [word: string]: Vector }Regenerating / Updating the Dataset
A conversion script is provided to build your own subset from any GloVe 50-dimension file.
# Example: download the GloVe 6B 50d file
curl -L https://nlp.stanford.edu/data/glove.6B.zip -o glove.zip
unzip glove.zip glove.6B.50d.txt
# Convert the first 10 000 lines → src/embeddings.json
npm run convert:glove -- ./glove.6B.50d.txt src/embeddings.json 10000Commit the new embeddings.json, rebuild, and publish.
Development
npm install
npm test
npm run buildTesting
The test-suite validates that:
- All keys are strings.
- Every vector has length 50 and all elements are numbers.
npm testPublishing
npm version patch # or minor/major
npm publish --access public🔗 Related
👉 Need to clean and normalize text before embedding it?
Check outtext-prep-lite👉 Need a simple and robust PDF text extraction utility with an quality interface? Check out [
pdf-worker-package]https://www.npmjs.com/package/pdf-worker-package
© 2025 Cavani21/TheGreatBey – MIT License