JSPM

  • Created
  • Published
  • Downloads 12
  • Score
    100M100P100Q62447F
  • License Apache-2.0

API for building custom AI coding editors/agents/platforms

Package Exports

  • @cellular-ai/engine

Readme

@cellular-ai/engine

API for building agentic coding editors/platforms | NPM


License NPM Downloads

Features

  • AI-powered code generation with streaming support
  • Tool execution with automatic function calling
  • Memory management for context-aware conversations
  • Express.js integration for easy web server setup
  • TypeScript support with full type definitions

Installation

npm install @cellular-ai/engine

Quick Start

Basic Usage

import { engine, stream } from '@cellular-ai/engine';

// Create an engine instance
const engineInstance = engine({
  dir: '/path/to/project',
  fullContext: true,
  sessionId: 'session-123',
  apikey: 'your-api-key',
  debug: false
});

// Stream AI responses
for await (const token of engineInstance.stream('Write a function to sort an array')) {
  process.stdout.write(token);
}

Express.js Integration

import express from 'express';
import { stream } from '@cellular-ai/engine';

const app = express();

app.post('/generate', async (req, res) => {
  const { prompt, dir, context } = req.body;
  const setHeaders = true;

  // Create engine for specific request
  const engineInstance = engine({
    dir: dir,
    fullContext: true,
    sessionId: 'session-123',
    apikey: 'your-api-key',
    debug: false
  });
  
  // Stream agent response w/ tool calls for given prompt
  await stream(res, engineInstance, prompt, setHeaders, context);
});

app.listen(3000, () => {
  console.log('Server running on port 3000');
});

The stream function returns data in standard SSE format:

  • Content events: data: {"type": "text", "content": "hello world", "timestamp": "..."}
  • Tool events:
    event: tool_request
    data: {"type": "tool_request", "content": {...}, "timestamp": "..."}

API Reference

engine(config)

Creates a new engine instance.

Parameters:

  • config (EngineConfig): Configuration object with the following properties:
    • dir (string): Project directory path
    • fullContext (boolean, optional): Whether to dump entire codebase into context window. Default: false
    • model (string, optional): Model to use. Options: 'pro', 'flash', 'mini'. Default: 'flash'
    • apikey (string, optional): Gemini API key. Can also be set via GEMINI_API_KEY environment variable.
    • sessionId (string, optional): Session identifier. Auto-generated if not provided.
    • debug (boolean): Enable debug logging

Returns: EngineService instance

stream(response, engine, prompt, setHeaders?, context?)

Express Integration to Streams AI responses seamlessly.

Parameters:

  • response (Response): Express.js response object.
  • engine (EngineService): Engine instance.
  • prompt (string): User prompt.
  • setHeaders (boolean, optional): Whether to set required SSE headers automatically. Default: false
  • context (string, optional): Additional context.

EngineService Methods

stream(message, context?)

Streams AI responses as an async generator. Ideal for ask type questions that do not require tool usage.

for await (const token of engineInstance.stream('Your prompt here')) {
  console.log(token);
}

streamWithToolEvents(message, context?)

Streams AI responses with tool execution events as an async generator. Ideal for project-wide agent queries.

for await (const event of engineInstance.streamWithToolEvents('Your prompt here')) {
  if (event.type === 'text') {
    console.log(event.data);
  } else if (event.type === 'tool_request') {
    console.log('Tool requested:', event.data);
  }
}

getTools()

Returns available tools as function declarations.

const tools = await engineInstance.getTools();
console.log('Available tools:', tools.map(t => t.name));

executeTool(toolName, params)

Executes a specific tool with parameters.

const result = await engineInstance.executeTool('read-file', { path: './example.js' });
console.log(result);

getMemoryContent()

Returns the current memory content.

const memory = engineInstance.getMemoryContent();
console.log('Memory content:', memory);

Configuration

Environment Variables

  • GEMINI_API_KEY: Your Gemini API key (required)

Examples

Code Generation

import { engine } from '@cellular-ai/engine';

const engineInstance = engine({
  dir: './my-project',
  fullContext: true,
  sessionId: 'code-gen-session',
  debug: false
});

for await (const token of engineInstance.stream(
  'Create a React component that displays a user profile'
)) {
  process.stdout.write(token);
}

Streaming with Tool Events

import { engine } from '@cellular-ai/engine';

const engineInstance = engine({
  dir: './my-project',
  fullContext: true,
  sessionId: 'code-gen-session',
  debug: false
});

for await (const event of engineInstance.streamWithToolEvents(
  'Create a React component that displays a user profile'
)) {
  switch (event.type) {
    case 'text':
      process.stdout.write(event.data);
      break;
    case 'tool_request':
      console.log('🛠️ Tool requested:', event.data.name);
      break;
    case 'tool_start':
      console.log('🚀 Tool started:', event.data.name);
      break;
    case 'tool_result':
      console.log('✅ Tool completed:', event.data.name);
      break;
    case 'tool_error':
      console.log('❌ Tool failed:', event.data.name);
      break;
  }
}

Tool Execution

import { engine } from '@cellular-ai/engine';

const engineInstance = engine({
  dir: './my-project',
  debug: false
});

// Get available tools
const tools = await engineInstance.getTools();
console.log('Available tools:', tools.map(t => t.name));

// Execute a specific tool
const fileContent = await engineInstance.executeTool('read-file', {
  path: './src/index.js'
});
console.log('File content:', fileContent);

License

All code in this project is maintained under the Apache-2.0 License