Package Exports
- @datastructures-js/binary-search-tree
- @datastructures-js/binary-search-tree/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@datastructures-js/binary-search-tree) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
@datastructures-js/binary-search-tree
Binary Search Tree & AVL Tree (Self Balancing Tree) implementation in javascript.

Contents
install
npm install --save @datastructures-js/binary-search-tree
require
const {
BinarySearchTree,
BinarySearchTreeNode,
AvlTree,
AvlTreeNode
} = require('@datastructures-js/binary-search-tree');
import
import {
BinarySearchTree,
BinarySearchTreeNode,
AvlTree,
AvlTreeNode
} from '@datastructures-js/binary-search-tree';
API
constructor
JS
const bst = new BinarySearchTree();
// self balancing tree
const bst = new AvlTree();
TS
// BinarySearchTree<T extends number|string, U = undefined>
const bst = new BinarySearchTree<number, string>();
// AvlTree<T extends number|string, U = undefined>
const bst = new AvlTree<number, { id: string, count: number }>();
insert
O(log(n))
inserts a node with key/value into the tree and returns the inserted node. Inserting an node with existing key, will update the existing node's value with the new one.
bst.insert(50, 'v1');
bst.insert(80, 'v2');
bst.insert(30, 'v3');
bst.insert(90, 'v4');
bst.insert(60, 'v5');
bst.insert(40, 'v6');
bst.insert(20, 'v7');
has
O(log(n))
checks if a node exists by its key.
bst.has(50); // true
bst.has(100); // false
find
O(log(n))
finds a node in the tree by its key.
const n60 = bst.find(60);
console.log(n60.getKey()); // 60
console.log(n60.getValue()); // v5
console.log(bst.find(100)); // null
min
O(log(n))
finds the node with min key in the tree.
const min = bst.min();
console.log(min.getKey()); // 20
console.log(min.getValue()); // v7
max
O(log(n))
finds the node with max key in the tree.
const max = bst.max();
console.log(max.getKey()); // 90
console.log(max.getValue()); // v4
lowerBound (floor)
O(log(n))
finds the node with the biggest key less or equal a given key k. You can eliminate equal keys by passing second param as false. .floor
is an alias to the same function.
console.log(bst.lowerBound(60).getKey()); // 60
console.log(bst.lowerBound(60, false).getKey()); // 50
console.log(bst.lowerBound(10)); // null
upperBound (ceil)
O(log(n))
finds the node with the smallest key bigger or equal a given key k. You can eliminate equal keys by passing second param as false. .ceil
is an alias to the same function.
console.log(bst.upperBound(75).getKey()); // 80
console.log(bst.upperBound(80).getKey()); // 80
console.log(bst.upperBound(80, false).getKey()); // 90
console.log(bst.upperBound(110)); // null
root
O(1)
returns the root node of the tree.
const root = bst.root();
console.log(root.getKey()); // 50
console.log(root.getValue()); // v1
count
O(1)
returns the count of nodes in the tree.
console.log(bst.count()); // 7
traverseInOrder
O(n)
traverses the tree in order (left-node-right).
bst.traverseInOrder((node) => console.log(node.getKey()));
/*
20
30
40
50
60
80
90
*/
traversePreOrder
O(n)
traverses the tree pre order (node-left-right).
bst.traversePreOrder((node) => console.log(node.getKey()));
/*
50
30
20
40
80
60
90
*/
traversePostOrder
O(n)
traverses the tree post order (left-right-node).
bst.traversePostOrder((node) => console.log(node.getKey()));
/*
20
40
30
60
90
80
50
*/
remove
O(log(n))
removes a node from the tree by its key. AVL tree will rotate nodes properly if the tree becomes unbalanced during deletion.
bst.remove(20); // true
bst.remove(100); // false
console.log(bst.count()); // 6
clear
O(1)
clears the tree.
bst.clear();
console.log(bst.count()); // 0
console.log(bst.root()); // null
BinarySearchTreeNode<T, U>
setKey
sets the node's key.
getKey
gets the node's key.
setValue
sets the node's value.
getValue
gets the node's value.
setLeft
sets the node's left child.
getLeft
gets the node's left child.
hasLeft
checks if node has a left child.
setRight
sets the node's right child.
getRight
gets the node's right child.
hasRight
checks if node has a right child.
setParent
sets the node's parent node.
getParent
gets the node's parent node.
hasParent
checks if node has a parent node.
isLeaf
checks if node is a leaf in the tree.
isRoot
check if node is the root node.
AvlTreeNode<T, U>
extends BinarySearchTreeNode<T, U> and adds the following methods:
rotateLeft
Rotates self left (counter-clockwise).
rotateRight
Rotates self right (clockwise).
rotateLeftRight
Rotates left child to left then self to right.
rotateRightLeft
Rotates right child to right then self to left.
getHeight
Gets the height of the node in the tree. root height is 1.
getLeftHeight
Gets the height of left child. 0 if no left child.
getRightHeight
Gets the height of right child. 0 if no right child.
getBalance
returns the node's balance as the diff between left and right heights.
isBalanced
checks if the node is balanced. (height diff is not more/less than 1/-1)
Build
grunt build
License
The MIT License. Full License is here