JSPM

  • Created
  • Published
  • Downloads 5013
  • Score
    100M100P100Q115915F
  • License Apache-2.0

AI Agent Orchestration Platform

Package Exports

    This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@defai.digital/automatosx) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

    Readme

    AutomatosX

    From Idea to Production in Minutes: The AI Workforce Platform with Persistent Memory

    AutomatosX is the only AI CLI that combines declarative workflow specs, policy-driven cost optimization, and a persistent AI workforce. Write a YAML spec, and AutomatosX generates your entire projectβ€”plans, infrastructure, tests, and executionβ€”while remembering everything and optimizing every API call.

    npm version License TypeScript Tests macOS Windows Ubuntu

    Status: βœ… Production Ready v6.0.1 | Oct 2025 | 23 Specialized Agents | Spec-Kit 87.5% Complete | Policy-Driven Routing | Auto-Generation


    πŸš€ The Complete AI Workflow Platform

    AutomatosX is the only AI platform that gives you:

    Feature What It Does Value
    πŸ“‹ Spec-Kit Integration Define workflows in YAML. Generate plans, DAGs, scaffolding, and tests automatically. Ship projects 10x faster
    πŸ’° Policy-Driven Routing Set cost/latency/privacy constraints. AutomatosX picks the optimal AI provider for every request. Save 60-80% on AI costs
    🧠 Persistent Memory Every conversation is remembered. Agents get perfect context automatically. Never repeat yourself again
    🀝 Multi-Agent Orchestration 23 specialized agents delegate tasks to each other. You manage the project, not the details. Focus on strategy, not micromanagement
    πŸ” Complete Observability Trace every routing decision, cost, and latency. Debug with confidence. Production-grade reliability

    ⚑ Quick Start: 60 Seconds to Your First Workflow

    # 1. Install AutomatosX
    npm install -g @defai.digital/automatosx
    
    # 2. Initialize your project
    cd your-project && ax init
    
    # 3. Create a workflow spec in natural language
    ax spec create "Build user authentication with database, API, JWT, security audit, and tests"
    
    # AutomatosX automatically:
    #   βœ… Generates a complete project spec (.specify/)
    #   βœ… Creates execution plan with cost estimates
    #   βœ… Generates DAG for parallel execution
    #   βœ… Scaffolds project structure
    #   βœ… Generates comprehensive tests
    #   βœ… Executes with policy-optimized routing
    #   βœ… Tracks all decisions with trace logging
    
    # 4. View the generated plan
    ax gen plan workflow.ax.yaml
    
    # 5. Execute the workflow (with cost optimization)
    ax run workflow.ax.yaml

    Result: Complete authentication system with database, API, security audit, and testsβ€”generated and executed in minutes, not days.


    AutomatosX is designed to work seamlessly with AI assistants using natural language commands. This is the recommended way to use AutomatosX:

    Use with Claude Code, Gemini CLI, or OpenAI Codex

    # In Claude Code
    "Please work with ax agent backend to implement user authentication"
    "Ask the ax security agent to audit this code for vulnerabilities"
    "Have the ax quality agent write tests for this feature"
    # In Gemini CLI
    "Use ax to help me find and fix bugs in the authentication system"
    "Work with ax agent data to optimize the database queries"
    # In OpenAI Codex
    "Collaborate with ax agent frontend to build the login UI"
    "Use ax agent devops to set up CI/CD pipeline"

    Why Natural Language?

    • βœ… Conversational: Talk to AI assistants like teammates
    • βœ… Context-aware: AI assistants maintain full conversation context
    • βœ… Flexible: No need to remember exact command syntax
    • βœ… Integrated: Works directly in your AI assistant workflow
    • βœ… Powerful: Combines AI assistant capabilities with AutomatosX's memory and orchestration

    Behind the Scenes

    When you say "work with ax agent backend", the AI assistant:

    1. Calls ax run backend "your task" with the appropriate context
    2. AutomatosX routes to the optimal provider based on policy
    3. Persistent memory ensures no context is lost
    4. Results are returned to your AI assistant
    5. The conversation continues naturally

    This natural language interface is how we expect users to work with AutomatosX daily.

    CLI-Only Mode (No API Access Required)

    If you only have CLI tools installed and no API access (no API keys or restricted network), you can force CLI-only mode:

    # Set environment variable to enforce CLI-only mode
    export AUTOMATOSX_CLI_ONLY=true
    
    # Now all providers will use CLI integration (subprocess), never API
    ax run backend "implement user authentication"

    When to use CLI-only mode:

    • βœ… You have codex, gemini, or claude CLI tools installed
    • βœ… You don't have API keys configured
    • βœ… You're behind a corporate firewall blocking API access
    • βœ… You want to avoid API connection attempts and retries

    What it does:

    • Forces openai provider to use CLI subprocess mode (codex command)
    • Prevents OpenAI SDK API calls even if configured for SDK mode
    • Eliminates "Unable to connect to API" errors and retry loops

    Note: This only affects OpenAI provider. Claude and Gemini providers always use CLI mode by default.


    🎯 What Makes AutomatosX Different?

    Traditional AI Workflows

    # ❌ Manual coordination
    codex "Design auth system"
    # β†’ Copy/paste output
    
    codex "Implement API from this design: [paste design]"
    # β†’ Repeat context, pay for duplicate tokens
    
    codex "Write tests for this code: [paste code]"
    # β†’ Lost context, higher costs, manual orchestration
    
    # Result: Slow, expensive, repetitive

    AutomatosX Workflows

    # βœ… Declarative, automated, optimized
    ax spec create "Build auth system with API, tests, and security audit"
    
    # Result: Complete system generated and executed automatically
    #   - Persistent memory eliminates context repetition
    #   - Policy routing saves 60-80% on API costs
    #   - Parallel execution completes 3-5x faster
    #   - Auto-generated tests provide 60%+ baseline coverage

    πŸ“‹ NEW: Spec-Kit Integration (v6.0+)

    The game-changing feature that makes AutomatosX the most powerful AI workflow platform.

    1. Define Your Workflow in YAML

    # workflow.ax.yaml
    metadata:
      id: user-auth-system
      name: User Authentication System
    
    # Policy-driven routing: Optimize for cost
    policy:
      goal: cost
      constraints:
        cost:
          maxPerRequest: 0.01
          maxDaily: 0.50
        latency:
          p95: 5000
    
    actors:
      - id: backend
        agent: backend
        description: Implement JWT authentication API
    
      - id: security
        agent: security
        description: Audit authentication implementation
    
      - id: quality
        agent: quality
        description: Generate comprehensive test suite

    2. Generate Everything Automatically

    # Generate execution plan with cost estimates
    ax gen plan workflow.ax.yaml
    # Output: Execution plan with phases, costs ($0.003-$0.008), risks
    
    # Generate DAG for parallel execution
    ax gen dag workflow.ax.yaml --format mermaid
    # Output: Dependency graph with change detection hash
    
    # Scaffold complete project structure
    ax gen scaffold workflow.ax.yaml
    # Output: Full directory structure, configs, READMEs
    
    # Generate comprehensive test suite
    ax gen tests workflow.ax.yaml
    # Output: Unit, integration, E2E tests with policy assertions

    3. Execute with Policy Optimization

    # Run workflow with cost optimization
    ax run workflow.ax.yaml
    
    # AutomatosX automatically:
    #   1. Filters providers by cost constraint ($0.01/request)
    #   2. Selects cheapest provider (Gemini: $0.000125/1K tokens)
    #   3. Executes actors in optimal order
    #   4. Logs all decisions to trace file
    #   5. Stays within budget ($0.50/day)

    4. Debug with Complete Visibility

    # View all routing decisions
    ax providers trace --follow
    
    # Output (real-time):
    # 18:26:49  POLICY       gemini-cli      goal=cost, passed=2/3
    # 18:26:50  SELECTION    gemini-cli      3 candidates β†’ policy-based selection
    # 18:26:51  EXECUTION    gemini-cli      βœ“ 1234ms, $0.000375

    The Complete Workflow:

    # From idea to production in one command
    ax spec create "Build e-commerce checkout with Stripe, inventory, and fraud detection" \
      && ax run workflow.ax.yaml
    
    # AutomatosX handles:
    #   βœ… Cost optimization (saves 60-80% vs Claude/GPT)
    #   βœ… Parallel execution (3-5x faster)
    #   βœ… Persistent memory (zero context repetition)
    #   βœ… Auto-generated tests (60%+ coverage)
    #   βœ… Complete observability (trace every decision)

    πŸ’° Policy-Driven Cost Optimization

    AutomatosX is the only AI platform with built-in cost optimization. Define your budget and constraintsβ€”AutomatosX automatically routes every request to the optimal provider.

    How It Works

    # Set your constraints in the spec
    policy:
      goal: cost  # Options: cost, latency, reliability, balanced
    
      constraints:
        cost:
          maxPerRequest: 0.01    # Max $0.01 per request
          maxDaily: 1.00         # Max $1.00 per day
    
        latency:
          p95: 5000              # Max 5 seconds at P95
    
        privacy:
          allowedClouds: [gcp]   # Only Google Cloud providers

    AutomatosX Routes Intelligently:

    Provider Cost/1M Tokens Speed (P95) When AutomatosX Uses It
    Gemini CLI $0.125-$0.375 3000ms Cost-optimized workflows (default)
    OpenAI (Codex) $2.50-$10.00 2000ms Speed-critical tasks
    Claude Code $3.00-$15.00 2500ms High-reliability tasks

    Real Savings:

    # Traditional workflow (all Claude)
    Task 1: $0.015  (Claude)
    Task 2: $0.018  (Claude)
    Task 3: $0.012  (Claude)
    Total: $0.045
    
    # AutomatosX workflow (policy-optimized)
    Task 1: $0.001  (Gemini - cost goal)
    Task 2: $0.002  (Gemini - cost goal)
    Task 3: $0.001  (Gemini - cost goal)
    Total: $0.004  (91% savings!)

    Debug Your Costs:

    # See why each provider was selected
    ax providers trace
    
    # View provider metadata and pricing
    ax providers info gemini-cli
    # Shows: Cost, latency, reliability, features
    
    # List providers sorted by cost
    ax providers list --sort cost

    🧠 Persistent Memory: Context That Never Expires

    AutomatosX never forgets. Every conversation, decision, and piece of code is automatically indexed in a local SQLite database with full-text search. Future tasks get perfect context automatically.

    The Problem with Traditional AI

    # Day 1: Design a calculator
    codex "Design a calculator with add/subtract"
    # β†’ Response: [Calculator design]
    
    # Day 2: Implement it (context lost!)
    codex "Implement the calculator"
    # β†’ Error: "What calculator? Please provide context."
    # β†’ You waste time and money re-explaining

    AutomatosX Solution

    # Day 1: Design
    ax run product "Design a calculator with add/subtract"
    # β†’ Automatically saved to memory
    
    # Day 2: Implement (context auto-injected!)
    ax run backend "Implement the calculator"
    # β†’ Memory finds "calculator" design from Day 1
    # β†’ Backend agent gets full context automatically
    # β†’ Zero context repetition, zero wasted tokens

    Memory Features

    • Speed: < 1ms search with SQLite FTS5
    • Cost: $0 (no embedding APIs)
    • Privacy: 100% local (data never leaves your machine)
    • Search: ax memory search "calculator"
    • Export: ax memory export > backup.json

    🀝 Multi-Agent Orchestration

    Stop micromanaging AI. Give a high-level goal to one agent, and AutomatosX creates a plan, delegates tasks, and orchestrates a team of specialists.

    How It Works

    # 1. Give a high-level goal
    ax run product "Build complete user authentication"
    
    # 2. Product agent analyzes and delegates
    # Output:
    # "I'll design auth with JWT and OAuth2.
    #
    #  @backend Please implement the JWT authentication API.
    #  @security Please audit the implementation for vulnerabilities.
    #  @quality Please write integration tests."
    
    # 3. AutomatosX executes automatically
    #    - Backend implements API
    #    - Security audits code
    #    - Quality writes tests
    #    - All in parallel, all with full context

    23 Specialized Agents

    Each agent is an expert in their domain:

    Agent Role Use Cases
    Bob Backend Engineer API design, databases, Go/Rust systems
    Frank Frontend Engineer React/Next.js, UI components, state management
    Steve Security Specialist Threat modeling, vulnerability assessment, penetration testing
    Queenie QA Engineer Test planning, E2E testing, quality assurance
    Oliver DevOps Engineer CI/CD, Kubernetes, infrastructure automation
    Paris Product Manager Requirements, roadmaps, stakeholder alignment
    Daisy Data Engineer ETL pipelines, data warehouses, Spark
    Dana Data Scientist ML models, statistical analysis, Python
    Mira ML Engineer PyTorch, TensorFlow, model deployment
    Tony CTO Technical strategy, architecture, scaling
    Eric CEO Business strategy, vision, leadership
    Wendy Technical Writer Documentation, API docs, tutorials
    Stan Standards Expert Best practices, design patterns, code review

    See all 23 agents | Create custom agents


    πŸ—οΈ Architecture: How It All Fits Together

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  1. YAML Spec (workflow.ax.yaml)                           β”‚
    β”‚     β€’ Define actors, policy, constraints                    β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                ↓
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  2. Spec-Kit Generation (ax gen)                           β”‚
    β”‚     β€’ Plan: Cost estimates, resource requirements, risks    β”‚
    β”‚     β€’ DAG: Dependency graph with change detection hash      β”‚
    β”‚     β€’ Scaffold: Complete project structure                  β”‚
    β”‚     β€’ Tests: Unit, integration, E2E with policy assertions  β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                ↓
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  3. Policy Evaluation (PolicyEvaluator)                     β”‚
    β”‚     β€’ Filter providers by constraints (cost, latency,       β”‚
    β”‚       privacy, reliability)                                 β”‚
    β”‚     β€’ Score providers by optimization weights               β”‚
    β”‚     β€’ Select optimal provider                               β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                ↓
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  4. Router Execution (Router)                               β”‚
    β”‚     β€’ Load providers in policy order                        β”‚
    β”‚     β€’ Execute with selected provider                        β”‚
    β”‚     β€’ Fallback on failure                                   β”‚
    β”‚     β€’ Log all decisions to trace file                       β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                ↓
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  5. Memory & Context (MemoryManager)                        β”‚
    β”‚     β€’ Index: Save response to SQLite FTS5                   β”‚
    β”‚     β€’ Retrieve: Search < 1ms for future tasks               β”‚
    β”‚     β€’ Inject: Auto-add context to prompts                   β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                ↓
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  6. Observability (RouterTraceLogger)                       β”‚
    β”‚     β€’ Log: JSONL trace to .automatosx/logs/                β”‚
    β”‚     β€’ View: ax providers trace --follow                     β”‚
    β”‚     β€’ Debug: Complete visibility into all decisions         β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    πŸ“š Real-World Examples

    Example 1: E-Commerce Checkout System

    # checkout.ax.yaml
    metadata:
      id: ecommerce-checkout
      name: E-Commerce Checkout System
    
    policy:
      goal: balanced  # Balance cost, speed, reliability
      constraints:
        cost:
          maxPerRequest: 0.02
          maxDaily: 2.00
        latency:
          p95: 3000
    
    actors:
      - id: backend
        agent: backend
        description: Implement Stripe integration and inventory management
    
      - id: security
        agent: security
        description: Implement fraud detection and PCI compliance checks
    
      - id: quality
        agent: quality
        description: E2E tests for checkout flow with Stripe test mode
    # Generate and execute
    ax gen plan checkout.ax.yaml    # See cost: $0.012-$0.018
    ax gen scaffold checkout.ax.yaml # Create project structure
    ax gen tests checkout.ax.yaml    # Generate test suite
    ax run checkout.ax.yaml          # Execute with cost optimization
    
    # Result:
    #   - Complete Stripe integration
    #   - Fraud detection system
    #   - PCI compliant
    #   - 60%+ test coverage
    #   - Total cost: $0.015 (vs $0.20 with Claude)

    Example 2: Microservices API

    # Natural language workflow
    ax spec create "Build microservices API with user service, auth service, API gateway, and Docker deployment"
    
    # AutomatosX generates:
    #   - Service architecture design
    #   - Three microservices in parallel
    #   - API gateway with rate limiting
    #   - Docker compose configuration
    #   - Integration tests
    #   - Documentation
    
    # Execute with policy routing
    ax run workflow.ax.yaml
    
    # Monitor costs and decisions
    ax providers trace --follow

    🎨 Advanced Features

    Parallel Execution

    # Execute tasks in parallel for 3-5x speedup
    ax spec run --parallel
    
    # AutomatosX automatically:
    #   - Builds dependency graph
    #   - Runs independent tasks concurrently
    #   - Waits for dependencies before starting
    #   - Aggregates results

    Checkpoints & Resume

    # Long-running workflows save checkpoints
    ax spec run --resumable
    
    # Interrupt anytime (Ctrl+C)
    # Resume from last checkpoint
    ax resume <run-id>
    
    # List all runs
    ax runs list

    Cost Tracking

    # View costs by provider
    ax cost
    
    # View costs by time period
    ax cost --period daily
    ax cost --period weekly
    ax cost --period monthly
    
    # View costs by agent
    ax cost --agent backend

    Change Detection

    # Generate DAG with hash
    ax gen dag workflow.ax.yaml -o dag.json
    
    # DAG stores spec hash for change detection
    # If spec changes, AutomatosX warns you before execution
    ax run dag.json
    # β†’ Warning: Spec has changed. Regenerate DAG? (Y/n)

    πŸ“– Documentation

    Getting Started

    Core Features

    Advanced

    Reference


    πŸ† Why AutomatosX Wins

    Capability AutomatosX Claude Code Cursor GitHub Copilot
    Declarative Workflows βœ… YAML specs ❌ ❌ ❌
    Auto-Generation βœ… Plans, DAGs, scaffolds, tests ❌ ❌ ❌
    Policy-Driven Routing βœ… Cost/latency optimization ❌ ❌ ❌
    Persistent Memory βœ… SQLite FTS5 < 1ms ❌ ❌ ❌
    Multi-Agent Teams βœ… 23 specialists ❌ ❌ ❌
    Cost Optimization βœ… 60-80% savings ❌ ❌ ❌
    Complete Observability βœ… Trace logging ❌ ❌ ❌
    Parallel Execution βœ… DAG-based ❌ ❌ ❌
    Local-First βœ… 100% private ⚠️ Hybrid ⚠️ Cloud ⚠️ Cloud

    Bottom Line: AutomatosX is the only platform that combines declarative workflows, cost optimization, persistent memory, and multi-agent orchestration in one tool.


    🚦 Production Readiness

    βœ… 87.5% Complete - Spec-Kit integration production ready βœ… 2,458 Tests Passing - Comprehensive test coverage βœ… TypeScript Strict Mode - Type-safe codebase βœ… Zero Resource Leaks - Clean shutdown guaranteed βœ… Cross-Platform - macOS, Windows, Ubuntu βœ… Local-First - No cloud dependencies, 100% private


    πŸ’» Installation

    npm install -g @defai.digital/automatosx
    ax --version  # v6.0.1

    Requirements

    ➑️ Full Installation Guide


    πŸ—ΊοΈ Roadmap

    Completed (v6.0.0 - v6.0.1)

    • βœ… Spec-Kit Integration (87.5%)
      • βœ… Plan generation
      • βœ… DAG generation
      • βœ… Scaffold generation
      • βœ… Test generation
    • βœ… Policy-Driven Routing
      • βœ… Cost/latency/privacy constraints
      • βœ… Provider metadata registry
      • βœ… Multi-factor scoring
    • βœ… Router Trace Logging
      • βœ… JSONL format
      • βœ… Real-time following
      • βœ… Color-coded CLI

    Coming Soon (v6.1.0)

    • ⏳ Regeneration Detector
      • Automatic spec change detection
      • Regeneration prompts
    • ⏳ Cost-Aware Router
      • Pre-execution cost warnings
      • Budget protection
    • ⏳ Enhanced Parallel Execution
      • Resource-aware scheduling
      • Priority-based execution

    View Full Roadmap


    🀝 Contributing

    We welcome contributions! See CONTRIBUTING.md for guidelines.

    Development Setup

    # Clone the repo
    git clone https://github.com/defai-digital/automatosx.git
    cd automatosx
    
    # Install dependencies
    npm install
    
    # Run in dev mode
    npm run dev -- run backend "test task"
    
    # Run tests
    npm test
    
    # Run type checking
    npm run typecheck
    
    # Build
    npm run build

    πŸ“„ License

    Apache 2.0 - See LICENSE for details.


    🌟 Star Us on GitHub

    If AutomatosX saves you time and money, give us a star! ⭐

    ⭐ Star on GitHub


    πŸ“§ Support


    🎯 TL;DR

    # Install
    npm i -g @defai.digital/automatosx
    
    # Create workflow from natural language
    ax spec create "Build auth system with API, tests, security audit"
    
    # Execute with cost optimization
    ax run workflow.ax.yaml  # 60-80% cheaper than Claude/GPT
    
    # Debug with trace logs
    ax providers trace --follow
    
    # Result: Production-ready auth system in minutes

    AutomatosX: The only AI platform with declarative workflows, cost optimization, persistent memory, and multi-agent orchestration.

    Try it now: npm i -g @defai.digital/automatosx


    Made with ❀️ by DeFAI Digital